https://ria.ru/20190801/1557080845.html
Физики из России раскрыли секреты работы "плоских" проводников
Физики из России раскрыли секреты работы "плоских" проводников - РИА Новости, 03.03.2020
Физики из России раскрыли секреты работы "плоских" проводников
Российские и зарубежные исследователи нашли объяснение тому, почему так называемые топологические изоляторы, вещества, проводящие ток только по поверхности,... РИА Новости, 03.03.2020
2019-08-01T15:25
2019-08-01T15:25
2020-03-03T15:17
наука
санкт-петербург
физико-технический институт ран
российская академия наук
открытия - риа наука
физика
сверхпроводники
россия
https://cdnn21.img.ria.ru/images/153137/57/1531375776_0:3:1036:586_1920x0_80_0_0_b1165db928443c5245c08f843e7f92eb.jpg
МОСКВА, 1 авг – РИА Новости. Российские и зарубежные исследователи нашли объяснение тому, почему так называемые топологические изоляторы, вещества, проводящие ток только по поверхности, ведут себя не так, как предсказывает теория. Их выводы были опубликованы в журнале Physical Review Letters.В последние годы физики из России и зарубежных стран активно изучают свойства так называемых топологических изоляторов – относительно нового класса материалов, которые проводят электрический ток только на поверхности, а внутри остаются диэлектриками-изоляторами или полупроводниками.Подобные вещества привлекают физиков тем, что электроны в этом поверхностном слое ведут себя чрезвычайно стабильно, что позволяет использовать их в качестве сверхнадежного "хранилища" информации в квантовых компьютерах.Проблема, как отмечают ученые из Института теоретической физики РАН, заключается в том, что "идеальных" топологических изоляторов не существует. Как показали первые же опыты с ними, ни один из них не может проводить ток практически без потерь, не нагреваясь и не теряя энергию, как это предсказывает теория. Их реальная электропроводность всегда оказывается ниже тех значений, на которые указывают даже те расчеты, которые учитывают все возможные потери.Физики-теоретики связывают это с тем, что внутри этих материалов всегда существуют различные примеси и несовершенства структуры, влияющие на характер движения электронов. К примеру, там могут присутствовать вкрапления атомов с ненулевым магнитным моментом, способные создавать магнитные поля и перенаправлять электроны."Одна из гипотез связывает расхождение теории и практики с наличием магнитных примесей. Слово "магнитные" в данном случае означает, что у примесных атомов есть магнитный момент. Если электрон подлетает к атому, их взаимодействия могут не только перевернуть импульс частицы, но и ее спин. Соответственно, она поменяет направление движения, и проводимость будет меньше ожидаемой", – объясняет Игорь Бурмистров.Поведение таких атомов в "обычных" материалах – металлах, полупроводниках и изоляторах – было хорошо изучено еще в 20 веке, но то, как они влияют на поведение топологических изоляторов, еще недавно никто не изучал.Два года назад Игорь Бурмистров, заместитель директора ИТФ РАН, и его коллеги заполнили этот пробел, просчитав те эффекты, которые возникают в топологическом изоляторе при попадании туда одного или нескольких атомов марганца.Эти расчеты помогли ученым понять, как меняется поведение электронов при появлении атомов марганца на границу между проводящим и непроводящими слоями этого материала или на большом расстоянии от него, и просчитать, как "далеко" действует магнитное поле одного такого атома, и как они взаимодействуют друг с другом.С другой стороны, недавние опыты экспериментаторов показывают, что магнитных примесей в топологических изоляторах нет. Возникает вопрос, что именно мешает движению электронов? Российские и зарубежные физики предположили, что роль примесей могут играть особые зоны внутри этих материалов, своеобразные "островки", где концентрация электронов повышена.Эти островки могут случайным образом возникать в разных точках "плоского" проводника и мешать движению электронов подобно реальным атомам марганца и другим типам магнитных примесей. Руководствуясь этой идеей, Бурмистров и его коллеги просчитали, как подобные скопления электронов будут влиять на движение тока, и как их поведение будет отличаться от того, как него влияют настоящие магнитные примеси.Эти расчеты показали, что подобные различия действительно существуют, и что электроны действительно могут скапливаться в большое число подобных структур внутри топологических изоляторов. Более того, они будут способны отражать назад не только одиночные носители заряда, но и целые "кучки" электронов, что не могут делать атомы.Подобные различия, как отмечает физик, можно использовать для того, чтобы различать настоящие магнитные примеси от скоплений электронов и даже определять их химический состав. Это ускорит разработку топологических изоляторов и позволит создать идеальную версию подобных материалов.Как надеются российские ученые, их идея привлечет внимание отечественных научных фондов и они смогут продолжить ее разработку в ближайшие годы.
https://ria.ru/20170615/1496569210.html
https://ria.ru/20190306/1551589623.html
https://ria.ru/20181018/1531002897.html
санкт-петербург
россия
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2019
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/153137/57/1531375776_127:0:911:588_1920x0_80_0_0_5802a9a7285ac2b5a9f8c422a0c9f66a.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
санкт-петербург, физико-технический институт ран, российская академия наук, открытия - риа наука, физика, сверхпроводники, россия
Наука, Санкт-Петербург, Физико-технический институт РАН, Российская академия наук, Открытия - РИА Наука, Физика, сверхпроводники, Россия
МОСКВА, 1 авг – РИА Новости. Российские и зарубежные исследователи нашли объяснение тому, почему так называемые топологические изоляторы, вещества, проводящие ток только по поверхности, ведут себя не так, как предсказывает теория. Их выводы были опубликованы в журнале
Physical Review Letters. В последние годы физики из России и зарубежных стран активно изучают свойства так называемых топологических изоляторов – относительно нового класса материалов, которые проводят электрический ток только на поверхности, а внутри остаются диэлектриками-изоляторами или полупроводниками.
Подобные вещества привлекают физиков тем, что электроны в этом поверхностном слое ведут себя чрезвычайно стабильно, что позволяет использовать их в качестве сверхнадежного "хранилища" информации в квантовых компьютерах.
Проблема, как отмечают ученые из Института теоретической физики РАН, заключается в том, что "идеальных" топологических изоляторов не существует.
Как показали первые же опыты с ними, ни один из них не может проводить ток практически без потерь, не нагреваясь и не теряя энергию, как это предсказывает теория. Их реальная электропроводность всегда оказывается ниже тех значений, на которые указывают даже те расчеты, которые учитывают все возможные потери.
Физики-теоретики связывают это с тем, что внутри этих материалов всегда существуют различные примеси и несовершенства структуры, влияющие на характер движения электронов. К примеру, там могут присутствовать вкрапления атомов с ненулевым магнитным моментом, способные создавать магнитные поля и перенаправлять электроны.
«
"Одна из гипотез связывает расхождение теории и практики с наличием магнитных примесей. Слово "магнитные" в данном случае означает, что у примесных атомов есть магнитный момент. Если электрон подлетает к атому, их взаимодействия могут не только перевернуть импульс частицы, но и ее спин. Соответственно, она поменяет направление движения, и проводимость будет меньше ожидаемой", – объясняет Игорь Бурмистров.
Поведение таких атомов в "обычных" материалах – металлах, полупроводниках и изоляторах – было хорошо изучено еще в 20 веке, но то, как они влияют на поведение топологических изоляторов, еще недавно никто не изучал.
Два года назад Игорь Бурмистров, заместитель директора ИТФ РАН, и его коллеги заполнили этот пробел, просчитав те эффекты, которые возникают в топологическом изоляторе при попадании туда одного или нескольких атомов марганца.
Эти расчеты помогли ученым понять, как меняется поведение электронов при появлении атомов марганца на границу между проводящим и непроводящими слоями этого материала или на большом расстоянии от него, и просчитать, как "далеко" действует магнитное поле одного такого атома, и как они взаимодействуют друг с другом.
С другой стороны, недавние опыты экспериментаторов показывают, что магнитных примесей в топологических изоляторах нет. Возникает вопрос, что именно мешает движению электронов? Российские и зарубежные физики предположили, что роль примесей могут играть особые зоны внутри этих материалов, своеобразные "островки", где концентрация электронов повышена.
Эти островки могут случайным образом возникать в разных точках "плоского" проводника и мешать движению электронов подобно реальным атомам марганца и другим типам магнитных примесей.
Руководствуясь этой идеей, Бурмистров и его коллеги просчитали, как подобные скопления электронов будут влиять на движение тока, и как их поведение будет отличаться от того, как него влияют настоящие магнитные примеси.
Эти расчеты показали, что подобные различия действительно существуют, и что электроны действительно могут скапливаться в большое число подобных структур внутри топологических изоляторов. Более того, они будут способны отражать назад не только одиночные носители заряда, но и целые "кучки" электронов, что не могут делать атомы.
Подобные различия, как отмечает физик, можно использовать для того, чтобы различать настоящие магнитные примеси от скоплений электронов и даже определять их химический состав. Это ускорит разработку топологических изоляторов и позволит создать идеальную версию подобных материалов.
Как надеются российские ученые, их идея привлечет внимание отечественных научных фондов и они смогут продолжить ее разработку в ближайшие годы.