https://ria.ru/20230531/neft-1875228318.html
Российские ученые показали, как эффективно перерабатывать тяжелую нефть
Российские ученые показали, как эффективно перерабатывать тяжелую нефть - РИА Новости, 31.05.2023
Российские ученые показали, как эффективно перерабатывать тяжелую нефть
Российские ученые собрали самую крупную в мире установку, позволяющую с помощью электрических разрядов эффективно перерабатывать тяжелую нефть и получать при... РИА Новости, 31.05.2023
2023-05-31T08:34
2023-05-31T08:34
2023-05-31T09:56
наука
нижний новгород
евгения титова
российская академия наук
курчатовский институт
московский физико-технический институт
россия
навигатор абитуриента
https://cdnn21.img.ria.ru/images/07e6/0b/17/1833568330_0:0:2973:1672_1920x0_80_0_0_2d5e8b6e7750750bc2a73fe0c6dc8715.jpg
МОСКВА, 31 мая - РИА Новости. Российские ученые собрали самую крупную в мире установку, позволяющую с помощью электрических разрядов эффективно перерабатывать тяжелую нефть и получать при этом продукты, используемые в химической промышленности, сообщили РИА Новости в Российском научном фонде (РНФ). Запасы тяжелой нефти составляют 70% от мировых. Однако ее переработка сложна из-за высокой плотности и вязкости, большого количества серосодержащих соединений. Современные методы имеют ряд недостатков: они требуют высоких температур и давления, большого количества водорода, а также специального оборудования. При этом для нагрева и поддержания высоких температур необходимо сжигать существенные объемы углеводородного топлива, что приводит к значительным выбросам углекислого газа. Этого можно избежать, если вместо высокотемпературных установок и печей использовать плазменные реакторы. Они не требуют дорогостоящих катализаторов и водорода, работают на электроэнергии с атомных и гидроэлектростанций, в ходе их работы не выделяется углекислый газ. Например, при плазменном пиролизе нефти под действием электрических разрядов образуются высокореактивные соединения: радикалы и ионы. Они возбуждают молекулы органических соединений в нефти, в результате чего запускаются специфические реакции, приводящие к расщеплению крупных молекул на более мелкие, которые потом могут использоваться во многих химических процессах. Несмотря на достоинства такой обработки нефти, внедрение этого метода в промышленность ограничено небольшими размерами реакторов. Ученые из Нижегородского государственного технического университета имени Алексеева (НГТУ, Нижний Новгород) собрали установку для плазменного пиролиза нефти. Она состояла из реактора, системы управления и регистрации электрических разрядов, а также системы сбора образующихся газов. Объем реактора составил 300 кубических сантиметров, что в 7,5 раз больше, чем у предыдущих моделей. Для проверки работоспособности установки исследователи использовали мазут, который заливался между двумя электродами. Авторы показали, что увеличение мощности энергетического воздействия приводит к повышению производительности, энергоэффективности процесса и выходу газообразных продуктов, а также влияет на их количество. Так, в ходе процесса выделялся водород, ацетилен, этилен, метан, а также углеводороды, содержащие от трех до пяти атомов углерода. Все они широко используются в химической промышленности. К тому же потребление энергии было самым низким, а выход ценных газообразных углеводородов - наиболее высоким. В твердофазных продуктах ученые обнаружили неупорядоченный графит и многослойные углеродные нанотрубки, которые могут использоваться в электронике. Кроме того, твердые продукты содержали атомы серы, кислорода, ванадия и никеля, что делает эти структуры привлекательными для использования в промышленности в качестве ускорителей химических реакций. "В наших дальнейших работах мы будем пытаться повысить глубину переработки мазута, увеличить производительность и рентабельность плазмохимического пиролиза. Также мы планируем исследовать углеродные наноструктуры для использования их в качестве катализаторов и адсорбентов", — рассказывает руководитель проекта, кандидат технических наук, ведущий научный сотрудник НГТУ Евгений Титов. В исследовании, поддержанном грантом РНФ, также принимали участие ученые из Федерального научно-исследовательского центра "Кристаллография и фотоника" РАН, Курчатовского института и Московского физико-технического института.
https://ria.ru/20230529/neft-1874729357.html
https://ria.ru/20230518/nauka-1872194994.html
https://ria.ru/20230530/nauka-1874776559.html
нижний новгород
россия
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2023
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/07e6/0b/17/1833568330_36:0:2767:2048_1920x0_80_0_0_8c56657836aa394d4d2ff03cc61c64b1.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
нижний новгород, евгения титова, российская академия наук, курчатовский институт, московский физико-технический институт, россия, навигатор абитуриента, университетская наука
Наука, Нижний Новгород, Евгения Титова, Российская академия наук, Курчатовский институт, Московский физико-технический институт, Россия, Навигатор абитуриента, Университетская наука
МОСКВА, 31 мая - РИА Новости. Российские ученые собрали самую крупную в мире установку, позволяющую с помощью электрических разрядов эффективно перерабатывать тяжелую нефть и получать при этом продукты, используемые в химической промышленности, сообщили РИА Новости в Российском научном фонде (РНФ).
Запасы тяжелой нефти составляют 70% от мировых. Однако ее переработка сложна из-за высокой плотности и вязкости, большого количества серосодержащих соединений. Современные методы имеют ряд недостатков: они требуют высоких температур и давления, большого количества водорода, а также специального оборудования. При этом для нагрева и поддержания высоких температур необходимо сжигать существенные объемы углеводородного топлива, что приводит к значительным выбросам углекислого газа.
Этого можно избежать, если вместо высокотемпературных установок и печей использовать плазменные реакторы. Они не требуют дорогостоящих катализаторов и водорода, работают на электроэнергии с атомных и гидроэлектростанций, в ходе их работы не выделяется углекислый газ. Например, при плазменном пиролизе нефти под действием электрических разрядов образуются высокореактивные соединения: радикалы и ионы. Они возбуждают молекулы органических соединений в нефти, в результате чего запускаются специфические реакции, приводящие к расщеплению крупных молекул на более мелкие, которые потом могут использоваться во многих химических процессах. Несмотря на достоинства такой обработки нефти, внедрение этого метода в промышленность ограничено небольшими размерами реакторов.
Ученые из Нижегородского государственного технического университета имени Алексеева (НГТУ,
Нижний Новгород) собрали установку для плазменного пиролиза нефти. Она состояла из реактора, системы управления и регистрации электрических разрядов, а также системы сбора образующихся газов. Объем реактора составил 300 кубических сантиметров, что в 7,5 раз больше, чем у предыдущих моделей.
Для проверки работоспособности установки исследователи использовали мазут, который заливался между двумя электродами. Авторы показали, что увеличение мощности энергетического воздействия приводит к повышению производительности, энергоэффективности процесса и выходу газообразных продуктов, а также влияет на их количество. Так, в ходе процесса выделялся водород, ацетилен, этилен, метан, а также углеводороды, содержащие от трех до пяти атомов углерода. Все они широко используются в химической промышленности.
К тому же потребление энергии было самым низким, а выход ценных газообразных углеводородов - наиболее высоким. В твердофазных продуктах ученые обнаружили неупорядоченный графит и многослойные углеродные нанотрубки, которые могут использоваться в электронике. Кроме того, твердые продукты содержали атомы серы, кислорода, ванадия и никеля, что делает эти структуры привлекательными для использования в промышленности в качестве ускорителей химических реакций.
"В наших дальнейших работах мы будем пытаться повысить глубину переработки мазута, увеличить производительность и рентабельность плазмохимического пиролиза. Также мы планируем исследовать углеродные наноструктуры для использования их в качестве катализаторов и адсорбентов", — рассказывает руководитель проекта, кандидат технических наук, ведущий научный сотрудник НГТУ
Евгений Титов.
В исследовании, поддержанном грантом РНФ, также принимали участие ученые из Федерального научно-исследовательского центра "Кристаллография и фотоника"
РАН,
Курчатовского института и
Московского физико-технического института.