https://ria.ru/20221017/samarskiy-1823668091.html
Два урожая разом. Россия и Китай создали новую методику рисоводства
Два урожая разом. Россия и Китай создали новую методику рисоводства - РИА Новости, 17.10.2022
Два урожая разом. Россия и Китай создали новую методику рисоводства
Методику интеллектуального контроля рисоводства, основанную на спутниковом наблюдении, создали ученые Самарского университета совместно с коллегами из Китая. По РИА Новости, 17.10.2022
2022-10-17T09:00
2022-10-17T09:00
2022-10-17T09:00
наука
технологии
китай
россия
москва
самарский университет
самара
университетская наука
https://cdnn21.img.ria.ru/images/152748/15/1527481528_0:321:3071:2048_1920x0_80_0_0_56d029bbfa1c246fccfbf14a38d29267.jpg
МОСКВА, 17 окт - РИА Ноовсти. Методику интеллектуального контроля рисоводства, основанную на спутниковом наблюдении, создали ученые Самарского университета совместно с коллегами из Китая. По словам авторов, разработка позволяет повышать и прогнозировать урожайность, оценивать здоровье растений, выбирать оптимальные участки для посадок. Результаты опубликованы в журнале Advances in Space Research.Мультиспектральная спутниковая съемка, как объяснили специалисты, позволяет точно определять минеральный состав почвы, режим освещенности и увлажнения на любой территории. Сегодня активно развиваются системы интеллектуального земледелия, способные с помощью этой информации оптимизировать полевые работы и повысить урожайность.Специалисты Самарского национального исследовательского университета имени С.П. Королева совместно с китайскими коллегами разработали новую методику "умного" рисоводства, основанную на анализе мультиспектральных данных. По словам авторов, разработка позволяет прогнозировать урожайность, определять оптимальные режимы удобрения и орошения, а также дает ряд других возможностей."Главный наш результат – новый вегетационный индекс оценки спектрограмм, повышающий точность анализа. Благодаря ему можно детально контролировать протекание жизненного цикла растений, что позволит, например, в некоторых случаях добиться двух урожаев там, где раньше собирали только один", – рассказала автор исследования, доцент кафедры технической кибернетики Самарского университета Комаль Кумари.Кроме того, по словам ученых, методика позволяет оценивать уровень здоровья растений и подбирать земли, наиболее подходящие для выращивания риса. Преимущество разработки перед аналогами, как сообщили авторы, в повышенной точности определения этапов жизненного цикла растений и более корректной оценке урожайности."Для вычисления вегетационного индекса и анализа спектрограмм с его помощью мы применили инструменты, основанные на машинном обучении", – отметил доцент кафедры технической кибернетики Самарского университета Рустам Парингер.В дальнейшем ученые планируют адаптировать предложенную методику для работы с другими сельскохозяйственными культурами, а также разработать систему рекомендаций для агрохозяйств по повышению эффективности землепользования с опорой на данные спектральной съемки.Исследование проводилось совместно со специалистами Китайского университета наук о земле и Гонконгского политехнического университета.
https://ria.ru/20220630/yuurgu-1799026548.html
https://ria.ru/20220719/urfu-1799624002.html
https://ria.ru/20221012/sfu-1823147993.html
китай
россия
москва
самара
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2022
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/152748/15/1527481528_290:0:3021:2048_1920x0_80_0_0_f60addf209c5fa24cfbaff14975ab737.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
технологии, китай, россия, москва, самарский университет, самара, университетская наука, навигатор абитуриента
Наука, Технологии, Китай, Россия, Москва, Самарский университет, Самара, Университетская наука, Навигатор абитуриента
МОСКВА, 17 окт - РИА Ноовсти. Методику интеллектуального контроля рисоводства, основанную на спутниковом наблюдении, создали ученые Самарского университета совместно с коллегами из Китая. По словам авторов, разработка позволяет повышать и прогнозировать урожайность, оценивать здоровье растений, выбирать оптимальные участки для посадок. Результаты опубликованы в журнале
Advances in Space Research.
Мультиспектральная спутниковая съемка, как объяснили специалисты, позволяет точно определять минеральный состав почвы, режим освещенности и увлажнения на любой территории. Сегодня активно развиваются системы интеллектуального земледелия, способные с помощью этой информации оптимизировать полевые работы и повысить урожайность.
Специалисты Самарского национального исследовательского университета имени С.П. Королева совместно с китайскими коллегами разработали новую методику "умного" рисоводства, основанную на анализе мультиспектральных данных. По словам авторов, разработка позволяет прогнозировать урожайность, определять оптимальные режимы удобрения и орошения, а также дает ряд других возможностей.
«
"Главный наш результат – новый вегетационный индекс оценки спектрограмм, повышающий точность анализа. Благодаря ему можно детально контролировать протекание жизненного цикла растений, что позволит, например, в некоторых случаях добиться двух урожаев там, где раньше собирали только один", – рассказала автор исследования, доцент кафедры технической кибернетики Самарского университета Комаль Кумари.
Кроме того, по словам ученых, методика позволяет оценивать уровень здоровья растений и подбирать земли, наиболее подходящие для выращивания риса. Преимущество разработки перед аналогами, как сообщили авторы, в повышенной точности определения этапов жизненного цикла растений и более корректной оценке урожайности.
"Для вычисления вегетационного индекса и анализа спектрограмм с его помощью мы применили инструменты, основанные на машинном обучении", – отметил доцент кафедры технической кибернетики Самарского университета Рустам Парингер.
В дальнейшем ученые планируют адаптировать предложенную методику для работы с другими сельскохозяйственными культурами, а также разработать систему рекомендаций для агрохозяйств по повышению эффективности землепользования с опорой на данные спектральной съемки.
Исследование проводилось совместно со специалистами Китайского университета наук о земле и Гонконгского политехнического университета.