Регистрация пройдена успешно!
Пожалуйста, перейдите по ссылке из письма, отправленного на

Российские физики создали нанолазер для светового компьютера будущего

© Florian MeinertТак художник представили себе атом, ведущий себя как волна, а не частица
Так художник представили себе атом, ведущий себя как волна, а не частица

МОСКВА, 5 сен – РИА Новости. Физики из России и зарубежных стран создали новый тип компактного нанолазера, который можно использовать в качестве основы для световых и квантовых компьютеров будущего, говорится в статье, опубликованной в журнале Physical Review Letters.

"Поляритоны предлагают альтернативную платформу для квантовых вычислений. Самое главное, как показала наша работа с группой из Мичигана, поляритонные конденсаты прекрасно себя чувствуют при комнатной температуре. Я убежден, что полупроводниковая платформа для квантовых технологий может быть создана в России за короткий срок. И здесь мы могли бы даже обогнать Google", – заявил Алексей Кавокин из Санкт-Петербургского государственного университета.

Поляритон - виртуальная частица, которая одновременно ведет себя и как волна, и как материя
Физики впервые сфотографировали квазичастицу света и материи

Поляритоны представляют собой одну из относительно недавно созданных виртуальных частиц, которая, как и фотон, одновременно ведет себя как волна и как частица. Он состоит из трех компонентов — оптического резонатора (набора из двух зеркал-отражателей), заточенной между ними световой волны и квантового колодца – атома и вращающегося вокруг него электрона, который периодически поглощает и испускает квант света.

Как показывают недавние опыты и теоретические расчеты российских физиков, поляритоны можно использовать в качестве переносчиков информации в световых и квантовых компьютерах будущего, а также в качестве основы для различных компактных источников света и других форм электромагнитного излучения.

Как рассказывает Кавокин, за последние несколько лет и российские, и зарубежные ученые использовали это свойство поляритонов для создания компактных лазеров, способных работать при комнатной температуре и потреблять очень небольшое количество энергии. Несмотря на подобные плюсы, такие лазеры нельзя было применять на практике, так как их конструкция в принципе не позволяла управлять их поляризацией, что критически важно для передачи и кодирования информации.

Физики за работой
Открытие физиков из МФТИ может ускорить компьютеры в 10 разРоссийские физики научились использовать так называемые поляритоны для передачи информации в миниатюрных кремниевых чипах, что позволит создать первые световые компьютеры в ближайшем будущем.

Кавокин и его коллеги из Университета ИТМО, а также США, Великобритании и Италии смогли решить эту проблему, "нарушив" законы физики, управляющие поведением электронов и тем, как те участвуют в накачке лазера. На поляритоны, как отмечают ученые, подобные ограничения действуют не всегда, так как при очень низких температурах они превращаются в особую экзотическую форму материи, так называемый конденсат Бозе-Эйнштейна.

"Обычно в поляритонном лазере образуются два конденсата Бозе-Эйнштейна. Оба конденсата излучают независимо, и в итоге направление поляризации является случайным. Если бы удалось накачивать преимущественно один конденсат, это позволило бы, во-первых, получать стабильное циркулярно-поляризованное излучение, а во-вторых, дополнительно снизить энергопотребление", — объясняет Иван Иорш, доцент Университета ИТМО в Санкт-Петербурге. 

Так художник представил себе стокновение сверхмалых частиц
Ученые выяснили, как передавать сигнал бесконечно в световых компьютерахРоссийские физики решили одну из главных проблем на пути создания световых компьютеров, заставив свет путешествовать почти без потерь между различными компонентами этих вычислительных устройств будущего.

Российские и зарубежные ученые поняли, как решить эту проблему, и заставили поляритоны работать и при комнатной температуре, используя необычный источник электронов – фрагмент ферромагнитного материала, сплав железа, кобальта и оксида магния. Как отмечают исследователи, свойствами электронов в них можно управлять при помощи внешнего магнитного поля, что позволяет гибко и быстро менять поляризацию лазерного излучения, порождаемого этими электронами.

Подобные лазеры, как отмечает Кавокин, позволят не только ускорить работу обычных оптоволоконных сетей, но и создать световые и квантовые компьютеры, работающие при комнатных температурах. Это упростит их конструкцию и приблизит нас к их созданию, заключают ученые.

Оценить 28
Рекомендуем
РИА
Новости
Лента
новостей
Сначала новыеСначала старые
loader
Онлайн
Заголовок открываемого материала
Чтобы участвовать в дискуссии
авторизуйтесь или зарегистрируйтесь
loader
Чаты
Заголовок открываемого материала