Рейтинг@Mail.ru
Ученые впервые получили трехмерную "атомную" фотографию вируса - РИА Новости, 19.06.2017
Регистрация пройдена успешно!
Пожалуйста, перейдите по ссылке из письма, отправленного на
Супертег Наука 2021январь
Наука

Ученые впервые получили трехмерную "атомную" фотографию вируса

© Иллюстрация РИА Новости . Алина ПолянинаУченые создали методику, позволяющую получать «атомные» фотографии вирусов
Ученые создали методику, позволяющую получать «атомные» фотографии вирусов
Читать ria.ru в
Дзен

МОСКВА, 19 июн — РИА Новости. Физики из Германии смогли получить первую полноценную "атомную" фотографию вируса, разработав методику сверхбыстрого просвечивания трехмерных биологических материалов при помощи рентгена, говорится в статье, опубликованной в журнале Nature Methods.

"Понимание того, как устроена трехмерная молекула белка или любого другого вещества, позволяет нам раскрывать то, какую роль он играет в работе клеток и организма. К примеру, структура белкового "абордажного крюка" вируса, при помощи которого он прикрепляется к клеточной мембране, может помочь нам защитить клетку от его проникновения", — рассказывает Дэвид Стюарт (David Stuart) из Оксфордского университета (Великобритания).

Сложные белковые молекулы в наших организмах состоят из нескольких тысяч аминокислот, чьи цепочки часто бывают закручены в сложную форму благодаря взаимодействиям между отдельными звеньями этих пептидных цепей. Пока биологи не до конца раскрыли законы, по которым белки принимают определенную форму и которые позволяют узнавать форму молекулы по ее формуле.

Рентгеновский снимок одиночной бактерии (справа) и вид ее «изнутри» в представлении художника (слева)Рентгеновские фотографии живых бактерий, полученные при помощи ускорителя LCLS
Ускоритель частиц помог ученым сделать первый "рентген" бактерий

Поэтому структуру отдельных белков ученым приходится определять "вручную" — или используя компьютерные симуляции, или же замораживая молекулы белков при помощи жидкого азота и гелия и "просвечивая" их сверхмощными рентгеновскими лазерами.

Как рассказывает Стюарт, ученые достаточно давно пытаются приспособить эту методику для получения "атомных" фотографий отдельных клеток, бактерий и вирусов. Все попытки получить подобные снимки проваливались по той причине, что живые организмы достаточно сложно заморозить, не разрушив, а сам рентген быстро уничтожает молекулы на их поверхности и не позволяет получить качественные трехмерные снимки всего микроба или вируса.

Врач смотрит на рентгеновский снимокСпектр вырабатываемого излучения (слева) и фотографии бактерии-камикадзе (справа)
Микробы-"камикадзе" помогли ученым создать ярчайшую рентген-"лампочку"

Для решения этой проблемы Стюарт и его команда создали новую методику фотографирования вирусов, которую они назвали серийной кристаллографией. Главным отличием ее от обычной рентгеновской кристаллографии является то, что она не требует заморозки изучаемых образцов и поэтому работает при комнатной температуре.

Ее ключевой частью является специальная кремниевая пластинка с большим количеством пор, размеры которых подобраны таким образом, что частицы вируса застревают в них и теряют подвижность. Просвечивая каждую подобную ловушку при помощи рентгеновского лазера, ученые могут получать данные по атомной структуре той части вируса, которая "выглядывает" из поры, и объединять их для получения полной трехмерной картинки.

Подобный подход, как рассказывает Стюарт, позволил его команде получить фотографии вируса BEV2, поражающего крупный рогатый скот и вызывающего выкидыши, потратив всего 14 минут времени на "просвечивание" чипа при помощи сверхмощного рентгеновского лазера LCLS, установленного в американском Национальном ускорительном центре SLAC.

Инжектор электронов в ускорителе лазера XFEL
Мощнейший в мире рентгеновский лазер XFEL произвел первый "выстрел"

Каждый пиксель на картинке, которую получили Стюарт и его коллеги, занимает всего 0,23 нанометра, что позволяет видеть отдельные атомы и группы молекул на поверхности оболочки вируса и внутри нее.

В ближайшее время физики планируют увеличить число пор в пластинке в десять раз и приспособить методику для работы с более крупными и сложными вирусами. Кроме того, использование европейского лазера XFEL, способного вырабатывать до 27 тысяч мощных, но коротких импульсов рентгена в секунду, позволит получать подобные трехмерные снимки еще быстрее, чем раньше, что ускорит поиск вакцин и лекарств от ВИЧ и других вирусных заболеваний.

 
 
 
Лента новостей
0
Сначала новыеСначала старые
loader
Онлайн
Заголовок открываемого материала
Чтобы участвовать в дискуссии,
авторизуйтесь или зарегистрируйтесь
loader
Обсуждения
Заголовок открываемого материала