https://ria.ru/20240822/nauka-1967543515.html
Ученые создали материал, "заряжающийся" от магнитного поля Земли
Ученые создали материал, "заряжающийся" от магнитного поля Земли - РИА Новости, 29.08.2024
Ученые создали материал, "заряжающийся" от магнитного поля Земли
Новый гибкий материал для преобразования магнитного поля Земли в ток создали специалисты НИУ МИЭТ в составе международного научного коллектива. По словам... РИА Новости, 29.08.2024
2024-08-22T09:00
2024-08-22T09:00
2024-08-29T11:07
наука
наука
земля
белоруссия
китай
навигатор абитуриента
университетская наука
национальный исследовательский университет «миэт»
https://cdnn21.img.ria.ru/images/07e8/08/15/1967538923_0:291:2605:1756_1920x0_80_0_0_59db6566c5ccbd0e93d64337be8e6295.jpg
МОСКВА, 22 авг — РИА Новости. Новый гибкий материал для преобразования магнитного поля Земли в ток создали специалисты НИУ МИЭТ в составе международного научного коллектива. По словам авторов, разработка может стать частью как компьютеров, так и умных имплантов. Результаты представлены в Journal of Magnetism and Magnetic Materials.Магнитоэлектрики — это материалы, способные преобразовывать энергию магнитных полей в электричество (обратный эффект), а также приводить к возникновению намагниченности под действием электрического поля (прямой эффект), объяснили в Национальном исследовательском университете "МИЭТ" (НИУ МИЭТ).Как рассказали ученые, сегодня аналоги таких материалов используют повсеместно, например, в датчиках скорости, частоты оборотов двигателя и других, которые есть в любом современном автомобиле. Ведутся разработки по созданию накопителей энергии на основе магнитоэлектрических материалов.Наиболее изученные магнитоэлектрики, по словам экспертов, имеют существенный недостаток: в их основе лежит хрупкая подложка, которую нельзя сгибать. Это свойство не позволяет использовать материалы для создания имплантов или гибких экранов телевизоров и смартфонов.Ученые НИУ МИЭТ совместно с коллегами из Новгородского государственного университета имени Ярослава Мудрого, Белоруссии и Китая разработали гибкий магнитоэлектрический композит (материал, состоящий из нескольких слоев). Он "перерабатывает" энергию магнитного поля Земли в электричество. Эксперты отметили, что получаемое в материале напряжение (2,2 милливольта) достаточно для передачи информации в современных персональных компьютерах (2-2,5 милливольта)."Эффективность преобразования магнитного поля в электрический ток выражается так называемым магнитоэлектрическим эффектом, в нашем материале он составляет 110 мВ/А. Это значение находится на уровне самых современных магнитоэлектрических композитных материалов на керамической основе", — пояснил доцент Института перспективных материалов и технологий НИУ МИЭТ Максим Силибин.Специалист добавил, что вместо хрупкой подложки ученые использовали поливинилиденфторид-трифторэтилен (ПВДФ-ТрФЭ). Этот полимер применяется для создания устойчивых к механическим и химическим воздействиям материалов. В частности, его используют в изготовлении гибких труб, защитных пленок и изоляции для кабелей, а также контейнеров для кислот и щелочей."Недавние исследования показали, что ПВДФ-ТрФЭ характеризуется высокими значениями пьезомодуля, что позволяет использовать его в качестве эффективной пьезоэлектрической компоненты магнитоэлектрического композита. Это означает, что при приложении механического давления этот материал приобретает электрическое напряжение", — объяснил специалист.Кроме того, ПВДФ-ТрФЭ делает новый магнитоэлектрический композит биосовместимым, благодаря чему его можно применить в производстве имплантов, отметил ученый.Сегодня исследовательский коллектив оценивает перспективы сотрудничества с отечественными предприятиями здравоохранения и микроэлектроники для введения нового магнитоэлектрика в повседневную жизнь.Исследование выполнено в рамках реализации государственной программы поддержки вузов "Приоритет-2030" национального проекта "Наука и университеты".
https://ria.ru/20231121/nauka-1909833867.html
https://ria.ru/20231211/nauka-1914638457.html
https://ria.ru/20240618/nauka-1953482960.html
земля
белоруссия
китай
россия
москва
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2024
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/07e8/08/15/1967538923_0:47:2605:2001_1920x0_80_0_0_b0a385f603f8f7feed82ea500e0aa488.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
наука, земля, белоруссия, китай, навигатор абитуриента, университетская наука, национальный исследовательский университет «миэт», россия, москва, физика, электромагнитное излучение, технологическое лидерство, российские инновации
Наука, Наука, Земля, Белоруссия, Китай, Навигатор абитуриента, Университетская наука, Национальный исследовательский университет «МИЭТ», Россия, Москва, Физика, электромагнитное излучение, Технологическое лидерство, Российские инновации
МОСКВА, 22 авг — РИА Новости. Новый гибкий материал для преобразования магнитного поля Земли в ток создали специалисты
НИУ МИЭТ в составе международного научного коллектива. По словам авторов, разработка может стать частью как компьютеров, так и умных имплантов. Результаты
представлены в Journal of Magnetism and Magnetic Materials.
Магнитоэлектрики — это материалы, способные преобразовывать энергию магнитных полей в электричество (обратный эффект), а также приводить к возникновению намагниченности под действием электрического поля (прямой эффект), объяснили в Национальном исследовательском университете "МИЭТ" (НИУ МИЭТ).
Как рассказали ученые, сегодня аналоги таких материалов используют повсеместно, например, в датчиках скорости, частоты оборотов двигателя и других, которые есть в любом современном автомобиле. Ведутся разработки по созданию накопителей энергии на основе магнитоэлектрических материалов.
Наиболее изученные магнитоэлектрики, по словам экспертов, имеют существенный недостаток: в их основе лежит хрупкая подложка, которую нельзя сгибать. Это свойство не позволяет использовать материалы для создания имплантов или гибких экранов телевизоров и смартфонов.
Ученые НИУ МИЭТ совместно с коллегами из Новгородского государственного университета имени Ярослава Мудрого, Белоруссии и Китая разработали гибкий магнитоэлектрический композит (материал, состоящий из нескольких слоев). Он "перерабатывает" энергию магнитного поля Земли в электричество. Эксперты отметили, что получаемое в материале напряжение (2,2 милливольта) достаточно для передачи информации в современных персональных компьютерах (2-2,5 милливольта).
«
"Эффективность преобразования магнитного поля в электрический ток выражается так называемым магнитоэлектрическим эффектом, в нашем материале он составляет 110 мВ/А. Это значение находится на уровне самых современных магнитоэлектрических композитных материалов на керамической основе", — пояснил доцент Института перспективных материалов и технологий НИУ МИЭТ Максим Силибин.
Специалист добавил, что вместо хрупкой подложки ученые использовали поливинилиденфторид-трифторэтилен (ПВДФ-ТрФЭ). Этот полимер применяется для создания устойчивых к механическим и химическим воздействиям материалов. В частности, его используют в изготовлении гибких труб, защитных пленок и изоляции для кабелей, а также контейнеров для кислот и щелочей.
"Недавние исследования показали, что ПВДФ-ТрФЭ характеризуется высокими значениями пьезомодуля, что позволяет использовать его в качестве эффективной пьезоэлектрической компоненты магнитоэлектрического композита. Это означает, что при приложении механического давления этот материал приобретает электрическое напряжение", — объяснил специалист.
Кроме того, ПВДФ-ТрФЭ делает новый магнитоэлектрический композит биосовместимым, благодаря чему его можно применить в производстве имплантов, отметил ученый.
Сегодня исследовательский коллектив оценивает перспективы сотрудничества с отечественными предприятиями здравоохранения и микроэлектроники для введения нового магнитоэлектрика в повседневную жизнь.
Исследование выполнено в рамках реализации государственной программы поддержки вузов "Приоритет-2030" национального проекта "Наука и университеты".