https://ria.ru/20230523/nauka-1873553024.html
В России разработали новый метод контроля фотонных интегральных схем
В России разработали новый метод контроля фотонных интегральных схем - РИА Новости, 23.05.2023
В России разработали новый метод контроля фотонных интегральных схем
Специалисты Санкт-Петербургского государственного электротехнического университета ЛЭТИ разработали неразрушающий метод контроля за производством так называемых РИА Новости, 23.05.2023
2023-05-23T10:32
2023-05-23T10:32
2023-05-23T16:22
наука
университетская наука
технологии
россия
https://cdnn21.img.ria.ru/images/07e4/09/0d/1577158170_0:160:3072:1888_1920x0_80_0_0_04dcc60cfea441a0e16aacbc7f1aaca7.jpg
МОСКВА, 23 мая – РИА Новости. Специалисты Санкт-Петербургского государственного электротехнического университета ЛЭТИ разработали неразрушающий метод контроля за производством так называемых фотонных интегральных схем, используемых в новых электронных приборах, сообщили РИА Новости в министерстве науки и высшего образования РФ. Предложенный подход позволит с высокой точностью контролировать параметры фотонных интегральных схем (ФИС, компонентной базы для устройств на принципах радиофотоники) как при отработке технологических операций, так и при массовом производстве, не разрушая при этом образцы. Радиофотоника – научно-техническое направление, которое исследует способы генерации, передачи и обработки СВЧ-сигналов с помощью оптического излучения. В последнее десятилетие изучение радиофотоники активно переходит в практическую плоскость, поскольку ее принципы позволяют создавать более компактные электронные приборы и вычислительные устройства с существенно лучшими характеристиками по сравнению с классической электроникой. Основой компонентной базы для радиофотоники являются фотонные интегральные схемы. Их изготавливают на пластине из полупроводникового материала. Такие пластины могут содержать тысячи различных компонентов, сгруппированных определенным образом в фотонные интегральные устройства (чипы). Полученная пластина в дальнейшем разрезается на отдельные чипы, количество которых может достигать десятков-сотен штук. Однако в процессе технологического производства микросхем на предприятиях могут возникать различные отклонения от заданной топологии и параметров технологических процессов, приводящие к неоднородности интегральных оптических волноводов по размерам и показателю преломления. Как следствие, характеристики изготовленной ФИС могут не соответствовать изначально заложенным требованиям. Для контроля параметров используются специальные методы диагностики, при этом большинство из них сопряжено с повреждением или разрушением контрольных образцов микросхем. "Мы разработали неразрушающий, быстрый и точный метод контроля качества фотонных интегральных схем с помощью измерения и дальнейшего анализа их передаточных характеристик", – рассказал доцент кафедры физической электроники и технологии ЛЭТИ Андрей Никитин. Суть нового метода в том, что в разные части пластины со схемами добавляются миниатюрные тестовые элементы. Оптическое излучение вводится в них из оптоволокна с поверхности пластины. Это позволяет измерить показатели, характеризующие ряд внутренних оптических параметров, которые описывают работу ФИС. Ключевых параметров три: волновое число оптического излучения, потери и коэффициент связи оптических интегральных волноводов, составляющих фотонную схему. Эти параметры связаны друг с другом в сложную комбинацию. Анализ полученных зависимостей сигнализирует о наличии или отсутствии дефектов ФИС, в частности, искажения геометрии функциональных элементов. Чтобы их "разделить" на отдельные показатели, ученые ЛЭТИ разработали специальную математическую модель. В качестве демонстрации работоспособности метода ученые определили параметры ФИС, изготовленной по широко применяемой в промышленности технологии, называемой "кремний-на-изоляторе". Полученные данные были использованы для расчета передаточной характеристики тестового устройства, которая с высокой степенью точности совпала с экспериментальной. Результаты исследования опубликованы в научном журнале Microwave and Optical Technology Letters. "Поскольку в России отрасль производства фотонных интегральных схем начинает бурно развиваться, то предложенный нами метод может найти широкое применение при отработке технологических процессов, а также для оперативного контроля качества продукции при массовом производстве на предприятиях микроэлектронной и оптоэлектронной промышленности", – отметил руководитель лаборатории магноники и радиофотоники, профессор кафедры физической электроники и технологии Алексей Устинов.
https://ria.ru/20221012/miet-1823178034.html
https://ria.ru/20230522/nauka-1872855557.html
https://ria.ru/20221129/yufu-1834796587.html
россия
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2023
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/07e4/09/0d/1577158170_171:0:2902:2048_1920x0_80_0_0_36b9ed9121bad2cdfe9f9bbadd1404f7.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
университетская наука, технологии, россия
Наука, Университетская наука, Технологии, Россия
МОСКВА, 23 мая – РИА Новости. Специалисты Санкт-Петербургского государственного электротехнического университета ЛЭТИ разработали неразрушающий метод контроля за производством так называемых фотонных интегральных схем, используемых в новых электронных приборах, сообщили РИА Новости в министерстве науки и высшего образования РФ.
Предложенный подход позволит с высокой точностью контролировать параметры фотонных интегральных схем (ФИС, компонентной базы для устройств на принципах радиофотоники) как при отработке технологических операций, так и при массовом производстве, не разрушая при этом образцы.
Радиофотоника – научно-техническое направление, которое исследует способы генерации, передачи и обработки СВЧ-сигналов с помощью оптического излучения. В последнее десятилетие изучение радиофотоники активно переходит в практическую плоскость, поскольку ее принципы позволяют создавать более компактные электронные приборы и вычислительные устройства с существенно лучшими характеристиками по сравнению с классической электроникой.
Основой компонентной базы для радиофотоники являются фотонные интегральные схемы. Их изготавливают на пластине из полупроводникового материала. Такие пластины могут содержать тысячи различных компонентов, сгруппированных определенным образом в фотонные интегральные устройства (чипы). Полученная пластина в дальнейшем разрезается на отдельные чипы, количество которых может достигать десятков-сотен штук.
Однако в процессе технологического производства микросхем на предприятиях могут возникать различные отклонения от заданной топологии и параметров технологических процессов, приводящие к неоднородности интегральных оптических волноводов по размерам и показателю преломления. Как следствие, характеристики изготовленной ФИС могут не соответствовать изначально заложенным требованиям. Для контроля параметров используются специальные методы диагностики, при этом большинство из них сопряжено с повреждением или разрушением контрольных образцов микросхем.
"Мы разработали неразрушающий, быстрый и точный метод контроля качества фотонных интегральных схем с помощью измерения и дальнейшего анализа их передаточных характеристик", – рассказал доцент кафедры физической электроники и технологии ЛЭТИ Андрей Никитин.
Суть нового метода в том, что в разные части пластины со схемами добавляются миниатюрные тестовые элементы. Оптическое излучение вводится в них из оптоволокна с поверхности пластины. Это позволяет измерить показатели, характеризующие ряд внутренних оптических параметров, которые описывают работу ФИС.
Ключевых параметров три: волновое число оптического излучения, потери и коэффициент связи оптических интегральных волноводов, составляющих фотонную схему. Эти параметры связаны друг с другом в сложную комбинацию. Анализ полученных зависимостей сигнализирует о наличии или отсутствии дефектов ФИС, в частности, искажения геометрии функциональных элементов. Чтобы их "разделить" на отдельные показатели, ученые ЛЭТИ разработали специальную математическую модель.
В качестве демонстрации работоспособности метода ученые определили параметры ФИС, изготовленной по широко применяемой в промышленности технологии, называемой "кремний-на-изоляторе". Полученные данные были использованы для расчета передаточной характеристики тестового устройства, которая с высокой степенью точности совпала с экспериментальной. Результаты исследования опубликованы в научном журнале Microwave and Optical Technology Letters.
"Поскольку в России отрасль производства фотонных интегральных схем начинает бурно развиваться, то предложенный нами метод может найти широкое применение при отработке технологических процессов, а также для оперативного контроля качества продукции при массовом производстве на предприятиях микроэлектронной и оптоэлектронной промышленности", – отметил руководитель лаборатории магноники и радиофотоники, профессор кафедры физической электроники и технологии Алексей Устинов.