https://ria.ru/20220216/mifi-1772933579.html
Российские ученые нашли новый способ получения терагерцового излучения
Российские ученые нашли новый способ получения терагерцового излучения - РИА Новости, 16.02.2022
Российские ученые нашли новый способ получения терагерцового излучения
Исследователи НИЯУ МИФИ предложили новый способ получения мощного терагерцового (ТГц) излучения с уникальными свойствами, который значительно расширит сферы... РИА Новости, 16.02.2022
2022-02-16T09:00
2022-02-16T09:00
2022-02-16T09:00
наука
навигатор абитуриента
технологии
национальный исследовательский ядерный университет "мифи"
университетская наука
москва
россия
https://cdnn21.img.ria.ru/images/152348/30/1523483043_0:132:1280:852_1920x0_80_0_0_6017e3414fb0842700d37ddafb3ca6ed.jpg
МОСКВА, 16 фев – РИА Новости. Исследователи НИЯУ МИФИ предложили новый способ получения мощного терагерцового (ТГц) излучения с уникальными свойствами, который значительно расширит сферы использования ТГц технологий в системах безопасности, связи и научной диагностики. Результаты исследования опубликованы в высокорейтинговом научном журнале Applied Physics Letters.Электромагнитные волны терагерцового диапазона находятся на спектральной шкале между радиоволнами и видимым светом. Они были впервые получены в лабораторных условиях в Московском университете около ста лет назад, и их открытие доказало единую природу электромагнитных колебаний разных частот.Со временем были обнаружены многочисленные уникальные свойства терагерцового излучения: способность проходить через многие материалы без поглощения, но при этом взаимодействовать с некоторыми сложными молекулами; оказывать на вещество специфическое неионизирующее воздействие; обеспечивать возможность передачи информации сверхвысокой плотности.Сегодня ТГц излучение применяется в системах безопасности в аэропортах, при разработке новых технологий передачи данных, превосходящих технологию 5G. Ученые используют его при исследовании строения вещества, взаимодействия и протекания реакций с участием сложных молекул, в методах точной диагностики и терапии в медицине, включая онкологию, а также при анализе биологических процессов в природе.В то же время, у волн ТГц диапазона имеется существенный недостаток – они быстро поглощаются в атмосфере, что ограничивает использование излучения невысокой интенсивности расстоянием в несколько метров. Чтобы качественно расширить потенциальные сферы использования ТГц технологий, необходимо увеличить мощность излучения.Чтобы решить эту задачу, сотрудники Института лазерных и плазменных технологий Национального исследовательского ядерного университета "МИФИ" (ЛаПлаз НИЯУ МИФИ) разрабатывают методы, основанные на плазменных явлениях с высокой плотностью энергии, в том числе лазерно-плазменные методы."Плазменные излучатели сегодня рассматриваются как наиболее перспективные источники мощного и сверхмощного ТГц излучения. Например, целый ряд работ в научных журналах посвящен возбуждению ТГц импульса в тонкой проволоке, облучаемой сверхинтенсивным ультракоротким лазерным импульсом. Такая ТГц волна оказывается чрезвычайно мощной, однако, обладает рядом специфических особенностей, осложняющих ее практическое использование", – рассказал доцент Института ЛаПлаз НИЯУ МИФИ Филипп Корнеев.Группа молодых ученых под руководством Филиппа Корнеева нашла и описала схему взаимодействия, при котором генерируется импульс излучения с уникальными свойствами – довольно длинный, хорошо направленный, с контролируемыми частотой и поляризацией."Мы предложили использовать миниатюрную разомкнутую круговую антенну, облучаемую с одного края. Под воздействием сверхмощного лазерного импульса возбуждается чрезвычайно интенсивная поверхностная плазменная разрядная волна. Она распространяется по замкнутому, за счет разлетающейся плазмы, контуру. Такое колебание тока приводит к генерации излучения с периодом, равным времени прохождения тока по контуру. В результате, энергия лазера преобразуется в мощный терагерцовый импульс с уникальными характеристиками и с очень высокой эффективностью", – пояснил Корнеев.По мнению авторов, разработанный подход к генерации сверхмощного ТГц излучения позволит, в перспективе, существенно расширить область его применения в технологиях будущего.
https://ria.ru/20211220/sgu-1764284727.html
https://ria.ru/20201102/lazer-1582667811.html
москва
россия
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2022
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/152348/30/1523483043_0:12:1280:972_1920x0_80_0_0_30877b0a30080c0bcd91eb176f1487f2.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
навигатор абитуриента, технологии, национальный исследовательский ядерный университет "мифи", университетская наука, москва, россия
Наука, Навигатор абитуриента, Технологии, Национальный исследовательский ядерный университет "МИФИ", Университетская наука, Москва, Россия
МОСКВА, 16 фев – РИА Новости. Исследователи
НИЯУ МИФИ предложили новый способ получения мощного терагерцового (ТГц) излучения с уникальными свойствами, который значительно расширит сферы использования ТГц технологий в системах безопасности, связи и научной диагностики. Результаты исследования опубликованы в высокорейтинговом научном журнале
Applied Physics Letters.
Электромагнитные волны терагерцового диапазона находятся на спектральной шкале между радиоволнами и видимым светом. Они были впервые получены в лабораторных условиях в Московском университете около ста лет назад, и их открытие доказало единую природу электромагнитных колебаний разных частот.
Со временем были обнаружены многочисленные уникальные свойства терагерцового излучения: способность проходить через многие материалы без поглощения, но при этом взаимодействовать с некоторыми сложными молекулами; оказывать на вещество специфическое неионизирующее воздействие; обеспечивать возможность передачи информации сверхвысокой плотности.
Сегодня ТГц излучение применяется в системах безопасности в аэропортах, при разработке новых технологий передачи данных, превосходящих технологию 5G. Ученые используют его при исследовании строения вещества, взаимодействия и протекания реакций с участием сложных молекул, в методах точной диагностики и терапии в медицине, включая онкологию, а также при анализе биологических процессов в природе.
В то же время, у волн ТГц диапазона имеется существенный недостаток – они быстро поглощаются в атмосфере, что ограничивает использование излучения невысокой интенсивности расстоянием в несколько метров. Чтобы качественно расширить потенциальные сферы использования ТГц технологий, необходимо увеличить мощность излучения.
Чтобы решить эту задачу, сотрудники Института лазерных и плазменных технологий Национального исследовательского ядерного университета "МИФИ" (ЛаПлаз НИЯУ МИФИ) разрабатывают методы, основанные на плазменных явлениях с высокой плотностью энергии, в том числе лазерно-плазменные методы.
"Плазменные излучатели сегодня рассматриваются как наиболее перспективные источники мощного и сверхмощного ТГц излучения. Например, целый ряд работ в научных журналах посвящен возбуждению ТГц импульса в тонкой проволоке, облучаемой сверхинтенсивным ультракоротким лазерным импульсом. Такая ТГц волна оказывается чрезвычайно мощной, однако, обладает рядом специфических особенностей, осложняющих ее практическое использование", – рассказал доцент Института ЛаПлаз НИЯУ МИФИ Филипп Корнеев.
Группа молодых ученых под руководством Филиппа Корнеева нашла и описала схему взаимодействия, при котором генерируется импульс излучения с уникальными свойствами – довольно длинный, хорошо направленный, с контролируемыми частотой и поляризацией.
"Мы предложили использовать миниатюрную разомкнутую круговую антенну, облучаемую с одного края. Под воздействием сверхмощного лазерного импульса возбуждается чрезвычайно интенсивная поверхностная плазменная разрядная волна. Она распространяется по замкнутому, за счет разлетающейся плазмы, контуру. Такое колебание тока приводит к генерации излучения с периодом, равным времени прохождения тока по контуру. В результате, энергия лазера преобразуется в мощный терагерцовый импульс с уникальными характеристиками и с очень высокой эффективностью", – пояснил Корнеев.
По мнению авторов, разработанный подход к генерации сверхмощного ТГц излучения позволит, в перспективе, существенно расширить область его применения в технологиях будущего.