https://ria.ru/20210902/misis-1748291128.html
В России создали материал, предсказанный около полувека назад
В России создали материал, предсказанный около полувека назад - РИА Новости, 03.09.2021
В России создали материал, предсказанный около полувека назад
Российским ученым удалось получить новый материал, который демонстрирует свойства "спиновой жидкости" — особого магнитного состояния вещества, при котором спины РИА Новости, 03.09.2021
2021-09-02T09:03
2021-09-02T09:03
2021-09-03T07:35
наука
наука
мисис
навигатор абитуриента
университетская наука
москва
россия
технологии
https://cdnn21.img.ria.ru/images/07e5/08/12/1746228593_0:448:2048:1600_1920x0_80_0_0_1f416eb746f4c3a7170f21434bd83aa1.jpg
МОСКВА, 2 сен — РИА Новости. Российским ученым удалось получить новый материал, который демонстрирует свойства "спиновой жидкости" — особого магнитного состояния вещества, при котором спины отдельных атомов не замерзают даже при температурах, близких к абсолютному нулю. Такие материалы могут найти применение в квантовых технологиях, основанных на перепутывании волновых функций отдельных частиц. Результаты исследования опубликованы в журнале Inorganic Chemistry.Спин — собственный магнитный момент электрона, представляет собой универсальное свойство элементарных частиц. Во многих материалах при комнатной температуре спины частиц разупорядочены и двигаются, а застывают и упорядочиваются лишь с понижением температуры.Спиновая жидкость — крайне редкое состояние вещества, при котором спины электронов остаются неупорядоченными и продолжают движение даже при температурах, близких к абсолютному нулю. Возможность существования такого состояния вещества рассматривалась еще на заре квантовой механики, однако к поискам такого материала ученые приступили сравнительно недавно.До сегодняшнего дня основным кандидатом на получение спиновой жидкости считался минерал гербертсмитит, в котором ионы меди как носители магнитного момента образуют идеальную двумерную решетку кагомэ (кагомэ — узор японской плетеной посуды с гексагональным мотивом). Благодаря открытию российских ученых, в список материалов, потенциально обладающих свойствами спиновой жидкости, добавилось еще одно вещество.Исследователи из МГУ имени М. В. Ломоносова и НИТУ "МИСиС" синтезировали кристаллы хлорид-фосфата оксокупрата натрия и висмута с решеткой типа квадратного кагомэ, в котором при охлаждении до -271°C не образуется магнитного порядка. В связи с этим исследователи предположили, что в созданном ими материале при низких температурах спиновая подсистема ведет себя как перепутанная спиновая жидкость.Синтезированный объект состоит из атомов натрия, меди, висмута, фосфора, кислорода и хлора, сообщил один из авторов исследования, заведующий лабораторией "Функциональные квантовые материалы" НИТУ "МИСиС" Александр Васильев."В кристаллической постройке кандидата в спиновые жидкости можно выделить два основных фрагмента-модуля. Первый — это слои, образованные кластерами из четырех тетраэдров. В центре каждого тетраэдра располагаются атомы кислорода. В трех вершинах тетраэдра находятся атомы меди, а в четвертой нашлось место атому висмута. Такие слои несут положительный заряд и готовы его разделить со вторым, отрицательно заряженным фрагментом", — рассказал он РИА Новости.Второй слой, по словам ученого, комбинируется из многогранников, в центрах которых располагаются атомы натрия, фосфора и меди, а в вершинах — атомы кислорода и (или) хлора."Взаимоотношения описанных слоев часто трактуют как модель "гость — хозяин". Интересно, что новое соединение было получено при избытке обычной поваренной соли! Соль способствовала формированию матрицы — "хозяина", радушно принявшего "гостевой" фрагмент состава с образованием материала с уникальными физическими характеристиками", — пояснил Александр Васильев.Он добавил, что в будущем материал может найти применение в квантовых технологиях, основанных на перепутывании волновых функций отдельных частиц.
https://ria.ru/20210831/kuzgtu-1747860492.html
https://ria.ru/20210419/tekhnologii-1728877117.html
москва
россия
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2021
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/07e5/08/12/1746228593_0:256:2048:1792_1920x0_80_0_0_770679a796d1aad55c9859aac643da5c.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
наука, мисис, навигатор абитуриента, университетская наука, москва, россия, технологии
Наука, Наука, МИСиС, Навигатор абитуриента, Университетская наука, Москва, Россия, Технологии
МОСКВА, 2 сен — РИА Новости. Российским ученым удалось получить новый материал, который демонстрирует свойства "спиновой жидкости" — особого магнитного состояния вещества, при котором спины отдельных атомов не замерзают даже при температурах, близких к абсолютному нулю. Такие материалы могут найти применение в квантовых технологиях, основанных на перепутывании волновых функций отдельных частиц. Результаты исследования опубликованы в журнале
Inorganic Chemistry.
Спин — собственный магнитный момент электрона, представляет собой универсальное свойство элементарных частиц. Во многих материалах при комнатной температуре спины частиц разупорядочены и двигаются, а застывают и упорядочиваются лишь с понижением температуры.
Спиновая жидкость — крайне редкое состояние вещества, при котором спины электронов остаются неупорядоченными и продолжают движение даже при температурах, близких к абсолютному нулю. Возможность существования такого состояния вещества рассматривалась еще на заре квантовой механики, однако к поискам такого материала ученые приступили сравнительно недавно.
До сегодняшнего дня основным кандидатом на получение спиновой жидкости считался минерал гербертсмитит, в котором ионы меди как носители магнитного момента образуют идеальную двумерную решетку кагомэ (кагомэ — узор японской плетеной посуды с гексагональным мотивом). Благодаря открытию российских ученых, в список материалов, потенциально обладающих свойствами спиновой жидкости, добавилось еще одно вещество.
Исследователи из МГУ имени М. В. Ломоносова и
НИТУ "МИСиС" синтезировали кристаллы хлорид-фосфата оксокупрата натрия и висмута с решеткой типа квадратного кагомэ, в котором при охлаждении до -271°C не образуется магнитного порядка. В связи с этим исследователи предположили, что в созданном ими материале при низких температурах спиновая подсистема ведет себя как перепутанная спиновая жидкость.
Синтезированный объект состоит из атомов натрия, меди, висмута, фосфора, кислорода и хлора, сообщил один из авторов исследования, заведующий лабораторией "Функциональные квантовые материалы" НИТУ "МИСиС" Александр Васильев.
«
"В кристаллической постройке кандидата в спиновые жидкости можно выделить два основных фрагмента-модуля. Первый — это слои, образованные кластерами из четырех тетраэдров. В центре каждого тетраэдра располагаются атомы кислорода. В трех вершинах тетраэдра находятся атомы меди, а в четвертой нашлось место атому висмута. Такие слои несут положительный заряд и готовы его разделить со вторым, отрицательно заряженным фрагментом", — рассказал он РИА Новости.
Второй слой, по словам ученого, комбинируется из многогранников, в центрах которых располагаются атомы натрия, фосфора и меди, а в вершинах — атомы кислорода и (или) хлора.
"Взаимоотношения описанных слоев часто трактуют как модель "гость — хозяин". Интересно, что новое соединение было получено при избытке обычной поваренной соли! Соль способствовала формированию матрицы — "хозяина", радушно принявшего "гостевой" фрагмент состава с образованием материала с уникальными физическими характеристиками", — пояснил Александр Васильев.
Он добавил, что в будущем материал может найти применение в квантовых технологиях, основанных на перепутывании волновых функций отдельных частиц.