https://ria.ru/20210603/miet-1735227003.html
Уникальный материал для альтернативной энергетики создают в России
Уникальный материал для альтернативной энергетики создают в России - РИА Новости, 03.06.2021
Уникальный материал для альтернативной энергетики создают в России
Ученые Национального исследовательского университета "МИЭТ" (НИУ МИЭТ) приступили к разработке уникальных наноматериалов, которые позволят эффективно получать... РИА Новости, 03.06.2021
2021-06-03T09:00
2021-06-03T09:00
2021-06-03T09:00
наука
национальный исследовательский университет «миэт»
навигатор абитуриента
университетская наука
https://cdnn21.img.ria.ru/images/07e4/0b/06/1583411531_0:320:3072:2048_1920x0_80_0_0_0c68f7fc93d65cd818e228e94b500a5b.jpg
МОСКВА, 3 июн — РИА Новости. Ученые Национального исследовательского университета "МИЭТ" (НИУ МИЭТ) приступили к разработке уникальных наноматериалов, которые позволят эффективно получать электроэнергию, используя перепад температур. По их словам, проект, рассчитанный до 2023 года, может радикально расширить возможности этого направления альтернативной энергетики. О старте проекта сообщили в пресс-службе вуза.Термоэлектрические генераторы – простые и надежные источники электроэнергии, не требующие обслуживания. Применяются такие системы, по словам специалистов, для питания метеостанций, маяков, сейсмических сканеров, автоматики на космических кораблях, субмаринах и буровых скважинах, а также для катодной защиты трубопроводов.Энергию такие системы черпают из перепада температур между горячим и холодным концами термоэлемента: в их основе лежит эффект Зеебека, то есть возникновение тока между двумя ветвями электрической цепи, имеющими разный химический состав и разную температуру в месте контакта. Недостаток подобных генераторов – низкий КПД, порядка 6-8%, и высокая стоимость энергии, около 30 долларов за 1 Ватт.Ключ к созданию термоэлектрогенераторов следующего поколения – новые материалы с низкой теплопроводностью и высокой электропроводностью, объяснили ученые. Традиционно используют предложенные советским академиком Иоффе твердые растворы полупроводников. В этих материалах атомы разных элементов выстраиваются в общую кристаллическую решетку с переменной структурой, что, по словам ученых, позволяет снизить теплопроводность без больших потерь в электропроводности.Специалисты НИУ МИЭТ предложили за счет применения нанотехнологий усовершенствовать устаревший подход Иоффе. Цель нового проекта ученых университета – всесторонне изучить проблемы и преимущества различных типов наноструктур, которые можно создать на основе твердых растворов полупроводников."У термоэлектрических материалов должна быть очень низкая теплопроводность – примерно, как у стекла. Мы надеемся достичь этого благодаря снижению решеточной теплопроводности за счет создания особой наноструктуры. Если будет найден способ увеличить термоэлектрические свойства материалов хотя бы в два-три раза, значит, этот вид энергетики сравняется по эффективности с традиционными", – рассказал руководитель проекта, профессор Института перспективных материалов и технологий НИУ МИЭТ Алексей Шерченков.Новые термоэлектрические генераторы, как считают ученые, смогут стать отличной альтернативой ветрякам и солнечным батареям, которые требуют целый ряд условий для эффективной работы. Планируемый предел рабочих температур новых материалов – более 900 °С."Для управления составом, структурой и параметрами обработки новых материалов нужно детально изучить их тепло- и электрофизические параметры. Наноструктура не является равновесным состоянием материала, поэтому сделать ее устойчивой – например, к регулярному нагреву почти до тысячи градусов – непростая задача", – отметил профессор Института перспективных материалов и технологий НИУ МИЭТ Юрий Штерн.Работы над технологией получения новых термоэлектрических материалов планируется завершить в 2023 году. В проекте, поддержанном грантом РНФ № 21-19-00312, принимают активное участие аспиранты и молодые ученые НИУ МИЭТ.
https://ria.ru/20200416/1570082977.html
https://ria.ru/20210212/misis-1596967761.html
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2021
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/07e4/0b/06/1583411531_304:0:3035:2048_1920x0_80_0_0_664e58da49d72c60d03dd75a07a57cac.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
национальный исследовательский университет «миэт», навигатор абитуриента, университетская наука
Наука, Национальный исследовательский университет «МИЭТ», Навигатор абитуриента, Университетская наука
МОСКВА, 3 июн — РИА Новости. Ученые Национального исследовательского университета "МИЭТ" (НИУ МИЭТ) приступили к разработке уникальных наноматериалов, которые позволят эффективно получать электроэнергию, используя перепад температур. По их словам, проект, рассчитанный до 2023 года, может радикально расширить возможности этого направления альтернативной энергетики. О старте проекта сообщили в пресс-службе вуза.
Термоэлектрические генераторы – простые и надежные источники электроэнергии, не требующие обслуживания. Применяются такие системы, по словам специалистов, для питания метеостанций, маяков, сейсмических сканеров, автоматики на космических кораблях, субмаринах и буровых скважинах, а также для катодной защиты трубопроводов.
Энергию такие системы черпают из перепада температур между горячим и холодным концами термоэлемента: в их основе лежит эффект Зеебека, то есть возникновение тока между двумя ветвями электрической цепи, имеющими разный химический состав и разную температуру в месте контакта. Недостаток подобных генераторов – низкий КПД, порядка 6-8%, и высокая стоимость энергии, около 30 долларов за 1 Ватт.
Ключ к созданию термоэлектрогенераторов следующего поколения – новые материалы с низкой теплопроводностью и высокой электропроводностью, объяснили ученые. Традиционно используют предложенные советским академиком Иоффе твердые растворы полупроводников. В этих материалах атомы разных элементов выстраиваются в общую кристаллическую решетку с переменной структурой, что, по словам ученых, позволяет снизить теплопроводность без больших потерь в электропроводности.
Специалисты НИУ МИЭТ предложили за счет применения нанотехнологий усовершенствовать устаревший подход Иоффе. Цель нового проекта ученых университета – всесторонне изучить проблемы и преимущества различных типов наноструктур, которые можно создать на основе твердых растворов полупроводников.
«
"У термоэлектрических материалов должна быть очень низкая теплопроводность – примерно, как у стекла. Мы надеемся достичь этого благодаря снижению решеточной теплопроводности за счет создания особой наноструктуры. Если будет найден способ увеличить термоэлектрические свойства материалов хотя бы в два-три раза, значит, этот вид энергетики сравняется по эффективности с традиционными", – рассказал руководитель проекта, профессор Института перспективных материалов и технологий НИУ МИЭТ Алексей Шерченков.
Новые термоэлектрические генераторы, как считают ученые, смогут стать отличной альтернативой ветрякам и солнечным батареям, которые требуют целый ряд условий для эффективной работы. Планируемый предел рабочих температур новых материалов – более 900 °С.
"Для управления составом, структурой и параметрами обработки новых материалов нужно детально изучить их тепло- и электрофизические параметры. Наноструктура не является равновесным состоянием материала, поэтому сделать ее устойчивой – например, к регулярному нагреву почти до тысячи градусов – непростая задача", – отметил профессор Института перспективных материалов и технологий НИУ МИЭТ Юрий Штерн.
Работы над технологией получения новых термоэлектрических материалов планируется завершить в 2023 году. В проекте, поддержанном грантом РНФ № 21-19-00312, принимают активное участие аспиранты и молодые ученые НИУ МИЭТ.