https://ria.ru/20210602/kvanty-1735303366.html
Ученые получили квантовую запутанность необычного типа
Ученые получили квантовую запутанность необычного типа - РИА Новости, 02.06.2021
Ученые получили квантовую запутанность необычного типа
Испанские физики сообщили о том, что им впервые удалось получить состояние квантового переплетения двух квантовых запоминающих устройств, расположенных в разных РИА Новости, 02.06.2021
2021-06-02T18:00
2021-06-02T18:00
2021-06-02T18:00
наука
технологии
испания
физика
компьютерные технологии
https://cdnn21.img.ria.ru/images/07e5/06/02/1735297943_0:412:2730:1948_1920x0_80_0_0_4278aec6497c685d59e9868efcab5ada.jpg
МОСКВА, 2 июн — РИА Новости. Испанские физики сообщили о том, что им впервые удалось получить состояние квантового переплетения двух квантовых запоминающих устройств, расположенных в разных лабораториях на расстоянии десяти метров и объединенных фотонами на длине волны связи. Это открывает путь к созданию устройств квантового Интернета будущего, способных работать на больших расстояниях друг от друга. Результаты исследования опубликованы в журнале Nature.В 1990-е годы инженеры добились значительных успехов в области телекоммуникаций, расширив сети за пределы городов и мегаполисов. Чтобы достичь этого, они использовали повторители, которые усиливали ослабленные сигналы, передавая их на большие расстояния. Теперь эту роль выполняют спутники.Для построения квантового Интернета, наряду с источниками кубитов нужны элементы квантовой памяти, действующие как повторители, использующие в качестве ключевых компонентов системы суперпозицию и запутанность. Но чтобы такая система была управляемой, переплетение квантовой памяти должно создаваться и поддерживаться на больших расстояниях.Исследователи из Института фотонных наук в Барселоне (ICFO) впервые достигли масштабируемого квантового запутывания между двумя удаленными многомодовыми твердотельными объектами квантовой памяти, которое они поддерживали в течение 25 микросекунд в двух квантовых запоминающих устройствах, расположенных на расстоянии десяти метров друг от друга. Разработанный метод также позволил достичь рекордной скорости запутывания в системе.В течение нескольких месяцев ученые проводили эксперимент, в котором в качестве ячейки квантовой памяти использовали кристалл, легированный редкоземельными элементами. Два источника генерировали коррелированные пары одиночных фотонов, один из которых отправлялся в квантовую память, состоящую из миллионов атомов, случайно размещенных внутри кристалла, и сохранялся там через протокол, называемый гребенкой атомных частот, а другой, так называемый холостой, — по оптическому волокну на устройство, называемое светоделителем.Каждый раз, когда ученые видели на мониторе щелчок холостого фотона, попадающего в детектор, они фиксировали запутанность, которая заключалась в том, что сигнальный фотон находился в состоянии суперпозиции между двумя квантовыми запоминающими устройствами, где он хранился как возбуждение, разделяемое десятками миллионов атомов."В эксперименте любопытно то, что невозможно узнать, хранился ли фотон в квантовой памяти в лаборатории 1 или в лаборатории 2, которая находилась на расстоянии более десяти метров. Еще более странным и поразительным для нас было то, что мы были способны контролировать это", — приводятся в пресс-релизе ICFO слова первого автора статьи аспиранта Дарио Лаго-Ривера (Dario Lago-Rivera).В большинстве предыдущих исследований, в которых проводились эксперименты с запутанностью и квантовой памятью, ученые также использовали холостые фотоны для подтверждения, что запутанность между устройствами квантовой памяти была успешной. Но впервые запутанность была создана при обнаружении фотона на телекоммуникационной длине волны и хранилась в квантовой памяти в мультиплексном режиме. Совместная реализация этих двух условий, по мнению авторов, позволяет использовать разработанную схему на больших расстояниях, а технология мультиплексирования дает возможность передавать несколько сообщений одновременно. В классических телекоммуникациях, использующих для передачи информации Интернет, эта возможность активно используется, а в квантовых технологиях реализована впервые.Исследователи отмечают, что еще одно важное преимущество их разработки — это то, что ее можно легко интегрировать в существующую классическую сетевую инфраструктуру.
https://ria.ru/20210428/kvanty-1730195883.html
https://ria.ru/20210419/tekhnologii-1728877117.html
испания
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2021
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/07e5/06/02/1735297943_0:0:2730:2048_1920x0_80_0_0_367e3921f6a1bfdbf9bad46e881d9444.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
технологии, испания, физика, компьютерные технологии
Наука, Технологии, Испания, Физика, компьютерные технологии
МОСКВА, 2 июн — РИА Новости. Испанские физики сообщили о том, что им впервые удалось получить состояние квантового переплетения двух квантовых запоминающих устройств, расположенных в разных лабораториях на расстоянии десяти метров и объединенных фотонами на длине волны связи. Это открывает путь к созданию устройств квантового Интернета будущего, способных работать на больших расстояниях друг от друга. Результаты исследования
опубликованы в журнале Nature.
В 1990-е годы инженеры добились значительных успехов в области телекоммуникаций, расширив сети за пределы городов и мегаполисов. Чтобы достичь этого, они использовали повторители, которые усиливали ослабленные сигналы, передавая их на большие расстояния. Теперь эту роль выполняют спутники.
Для построения квантового Интернета, наряду с источниками кубитов нужны элементы квантовой памяти, действующие как повторители, использующие в качестве ключевых компонентов системы суперпозицию и запутанность. Но чтобы такая система была управляемой, переплетение квантовой памяти должно создаваться и поддерживаться на больших расстояниях.
Исследователи из Института фотонных наук в
Барселоне (ICFO) впервые достигли масштабируемого квантового запутывания между двумя удаленными многомодовыми твердотельными объектами квантовой памяти, которое они поддерживали в течение 25 микросекунд в двух квантовых запоминающих устройствах, расположенных на расстоянии десяти метров друг от друга. Разработанный метод также позволил достичь рекордной скорости запутывания в системе.
В течение нескольких месяцев ученые проводили эксперимент, в котором в качестве ячейки квантовой памяти использовали кристалл, легированный редкоземельными элементами. Два источника генерировали коррелированные пары одиночных фотонов, один из которых отправлялся в квантовую память, состоящую из миллионов атомов, случайно размещенных внутри кристалла, и сохранялся там через протокол, называемый гребенкой атомных частот, а другой, так называемый холостой, — по оптическому волокну на устройство, называемое светоделителем.
Каждый раз, когда ученые видели на мониторе щелчок холостого фотона, попадающего в детектор, они фиксировали запутанность, которая заключалась в том, что сигнальный фотон находился в состоянии суперпозиции между двумя квантовыми запоминающими устройствами, где он хранился как возбуждение, разделяемое десятками миллионов атомов.
"В эксперименте любопытно то, что невозможно узнать, хранился ли фотон в квантовой памяти в лаборатории 1 или в лаборатории 2, которая находилась на расстоянии более десяти метров. Еще более странным и поразительным для нас было то, что мы были способны контролировать это", — приводятся в пресс-релизе ICFO слова первого автора статьи аспиранта Дарио Лаго-Ривера (Dario Lago-Rivera).
В большинстве предыдущих исследований, в которых проводились эксперименты с запутанностью и квантовой памятью, ученые также использовали холостые фотоны для подтверждения, что запутанность между устройствами квантовой памяти была успешной. Но впервые запутанность была создана при обнаружении фотона на телекоммуникационной длине волны и хранилась в квантовой памяти в мультиплексном режиме.
Совместная реализация этих двух условий, по мнению авторов, позволяет использовать разработанную схему на больших расстояниях, а технология мультиплексирования дает возможность передавать несколько сообщений одновременно. В классических телекоммуникациях, использующих для передачи информации Интернет, эта возможность активно используется, а в квантовых технологиях реализована впервые.
Исследователи отмечают, что еще одно важное преимущество их разработки — это то, что ее можно легко интегрировать в существующую классическую сетевую инфраструктуру.