https://ria.ru/20191017/1559912207.html
Ученые усовершенствовали способ получения чистого топлива из воды
Ученые усовершенствовали способ получения чистого топлива из воды - РИА Новости, 17.10.2019
Ученые усовершенствовали способ получения чистого топлива из воды
РИА Новости, 17.10.2019
2019-10-17T19:33
2019-10-17T19:33
2019-10-17T19:33
наука
япония
открытия - риа наука
https://cdnn21.img.ria.ru/images/155921/23/1559212341_0:141:3137:1906_1920x0_80_0_0_49ad5cda9397edc202f035cf880fe5c6.jpg
МОСКВА, 17 окт — РИА Новости. Японские ученые придумали новый полупроводниковый материал для электрохимического расщепления воды. Фотоаноды из этого материала позволят значительно эффективнее получать водородное топливо, используя только воду и солнечную энергию. Это еще один шаг на пути к идеально чистому топливу. Результаты опубликованы в журнале Journal of the American Chemical Society.Водород — один из наиболее перспективных источников чистой энергии. Запасы его на планете практически не ограничены, но методы получения пока очень дорогие. Самый известный из них — фотоэлектрохимическое расщепление воды. Если в качестве источника энергии использовать солнечные батареи, схема становится не только низкозатратной, но и абсолютно экологически чистой.Суть ее заключается в том, что главный элемент фотоэлектролитической установки по расщеплению воды — фотоанод — подсоединяется к солнечной батарее и металлическому проводу, который действует как катод. Материал такого фотоанода должен обладать полупроводниковыми свойствами, а также быть очень устойчивым к окислению, так как одним из продуктов расщепления молекул воды является свободный кислород.Попытки производить фотоаноды из оксинитридов металлов были не очень успешными, так как оксинитриды не обладают необходимой стойкостью и быстро самоокисляются под воздействием света. В качестве альтернативы некоторые исследователи предлагались оксифториды, не подверженные самоокислению. В частности, речь шла об оксифториде титана и свинца Pb2Ti2O5.4F1.2. Ученые из Токийского технологического института во главе с профессором Казухико Маедой (Kazuhiko Maeda) провели детальное исследование фотоэлектрохимических характеристик этого соединения при разном освещении и приложенном напряжении и предложили модифицировать поверхность оксифторидного анода другими соединениями. По их мнению, это сильно повысит производительность за счет увеличения фототока в системе.Исследователи изготовили несколько анодов, поверхность которых была дополнительно покрыта сначала оксидом титана, а затем оксидами кобальта. Эксперименты подтвердили высокую эффективность новых фотоанодов. "До сих пор оксинитриды и подобные соединения рассматривались как перспективные, но трудные в обращении материалы для фотоанодов из-за присущей им нестабильности к самоокислению. Pb2Ti2O5.4F1.2 представляет собой долгожданный прорыв в этом направлении", — приводит слова Казухико Маеды пресс-служба Токийского технологического института.
https://ria.ru/20190904/1558272151.html
https://ria.ru/20170109/1485295496.html
япония
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2019
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/155921/23/1559212341_204:0:2933:2047_1920x0_80_0_0_263854a618343654ec1c8e41f6b646a6.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
япония, открытия - риа наука
Наука, Япония, Открытия - РИА Наука
МОСКВА, 17 окт — РИА Новости. Японские ученые придумали новый полупроводниковый материал для электрохимического расщепления воды. Фотоаноды из этого материала позволят значительно эффективнее получать водородное топливо, используя только воду и солнечную энергию. Это еще один шаг на пути к идеально чистому топливу. Результаты
опубликованы в журнале
Journal of the American Chemical Society. Водород — один из наиболее перспективных источников чистой энергии. Запасы его на планете практически не ограничены, но методы получения пока очень дорогие. Самый известный из них — фотоэлектрохимическое расщепление воды. Если в качестве источника энергии использовать солнечные батареи, схема становится не только низкозатратной, но и абсолютно экологически чистой.
Суть ее заключается в том, что главный элемент фотоэлектролитической установки по расщеплению воды — фотоанод — подсоединяется к солнечной батарее и металлическому проводу, который действует как катод. Материал такого фотоанода должен обладать полупроводниковыми свойствами, а также быть очень устойчивым к окислению, так как одним из продуктов расщепления молекул воды является свободный кислород.
Попытки производить фотоаноды из оксинитридов металлов были не очень успешными, так как оксинитриды не обладают необходимой стойкостью и быстро самоокисляются под воздействием света. В качестве альтернативы некоторые исследователи предлагались оксифториды, не подверженные самоокислению. В частности, речь шла об оксифториде титана и свинца Pb2Ti2O5.4F1.2.
Ученые из Токийского технологического института во главе с профессором Казухико Маедой (Kazuhiko Maeda) провели детальное исследование фотоэлектрохимических характеристик этого соединения при разном освещении и приложенном напряжении и предложили модифицировать поверхность оксифторидного анода другими соединениями. По их мнению, это сильно повысит производительность за счет увеличения фототока в системе.
Исследователи изготовили несколько анодов, поверхность которых была дополнительно покрыта сначала оксидом титана, а затем оксидами кобальта. Эксперименты подтвердили высокую эффективность новых фотоанодов.
«
"До сих пор оксинитриды и подобные соединения рассматривались как перспективные, но трудные в обращении материалы для фотоанодов из-за присущей им нестабильности к самоокислению. Pb2Ti2O5.4F1.2 представляет собой долгожданный прорыв в этом направлении", — приводит слова Казухико Маеды пресс-служба Токийского технологического института.