https://ria.ru/20190624/1555859114.html
Химики из МГУ выяснят, как устроены самые опасные радиоактивные наночастицы
Химики из МГУ выяснят, как устроены самые опасные радиоактивные наночастицы - РИА Новости, 24.06.2019
Химики из МГУ выяснят, как устроены самые опасные радиоактивные наночастицы
Радиохимики из МГУ и их зарубежные коллеги впервые детально изучили структуру наночастиц тория, аналоги которых могут попадать в природу после аварий на АЭС. Их РИА Новости, 24.06.2019
2019-06-24T15:41
2019-06-24T15:41
2019-06-24T15:41
наука
радиация
мгу имени м. в. ломоносова
открытия - риа наука
химия
физика
нано
https://cdnn21.img.ria.ru/images/152976/64/1529766461_0:224:3000:1912_1920x0_80_0_0_1582d7702fa88fb4d68c6a7be134a873.jpg
МОСКВА, 24 июн – РИА Новости. Радиохимики из МГУ и их зарубежные коллеги впервые детально изучили структуру наночастиц тория, аналоги которых могут попадать в природу после аварий на АЭС. Их точное описание было раскрыто в журнале Physical Chemistry Chemical Physics."Мы выбрали оксид тория, поскольку он похож по структуре на окиси других актинидов, в том числе плутония, урана и нептуния, но при этом образует только один оксид (ThO2). Иными словами, мы можем изучить более простые наночастицы и перенести их свойства и закономерности образования на более сложные системы", — рассказывает Татьяна Плахова из Московского университета.Наночастицы стали предметом внимания ученых относительно недавно, примерно в последнюю половину века, однако они использовались человечеством, особенно в искусстве и металлургии, фактически с момента появления первых городов, ремесленников и цивилизации. Яркими примерами этого стали знаменитый кубок Ликурга, клинки из дамасской стали, "вечные" голубые краски индейцев майя и многие другие потерянные "ноу-хау" древности.В последние годы физики, химики, биологи и экологи начали обращать внимание не только на позитивные стороны нанотехнологий и наночастиц, но и на потенциальную угрозу, которую они несут для здоровья человека. Многие подобные кусочки материи могут беспрепятственно проникать внутрь клеток тела, вырабатывать большие количества оксидантов и повреждать их иными путями.К примеру, недавно Плахова и ее коллеги обнаружили, что некоторые природные минералы не просто поглощают атомы плутония и других радионуклидов, а способствуют формированию наночастиц из двуокиси этого элемента. Вдобавок, год назад химики обнаружили, что авария на АЭС "Фукусима" и последовавшие за ней взрывы привели к формированию и выбросу огромного числа радиоактивных наночастиц в окружающую ее почву и гидросферу. Все это заставило ученых изучить свойства подобных структур для оценки их опасности для природы и человека.Для изучения их свойств российские химики синтезировали набор наночастиц разных размеров, используя соединения тория, близкого "кузена" плутония, и просветили их при помощи мощных пучков рентгеновских лучей.Наблюдения за тем, как фотоны высоких энергий взаимодействуют с электронами на поверхности наночастиц, как отмечают исследователи, позволяют понять, как расположены атомы относительно друг друга и как устроена частица в целом. Для получения этих данных необходимы очень большие вычислительные ресурсы и специализированное оборудование, которое имелись в распоряжении у зарубежных участников эксперимента.Как показали эти наблюдения, химические свойства наночастиц в большей части задавались тем, как много "голых" атомов тория присутствовало на их поверхности. В целом их поведение соответствовало тому, что предсказывает теория, описывающая устройство наночастиц, что позволяет использовать ее для оценки опасности радиоактивных структур такого типа и того, как на них будут действовать вода и прочие растворители.В ближайшее время ученые намерены просчитать свойства наночастиц урана, плутония и других элементов, способных образовать связи с большим или меньшим числом атомов кислорода. Эти расчеты помогут понять, отличаются ли они от тория в этом отношении и следует ли предпринимать какие-то особые меры для защиты от них.
https://ria.ru/20190513/1553455755.html
https://ria.ru/20180301/1515537765.html
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2019
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/152976/64/1529766461_305:0:2854:1912_1920x0_80_0_0_d8f946e656df6b724a7bcb5971553ec4.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
радиация, мгу имени м. в. ломоносова, открытия - риа наука, химия, физика, нано
Наука, радиация, МГУ имени М. В. Ломоносова, Открытия - РИА Наука, Химия, Физика, нано
МОСКВА, 24 июн – РИА Новости. Радиохимики из МГУ и их зарубежные коллеги впервые детально изучили структуру наночастиц тория, аналоги которых могут попадать в природу после аварий на АЭС. Их точное описание было раскрыто в журнале
Physical Chemistry Chemical Physics. "Мы выбрали оксид тория, поскольку он похож по структуре на окиси других актинидов, в том числе плутония, урана и нептуния, но при этом образует только один оксид (ThO2). Иными словами, мы можем изучить более простые наночастицы и перенести их свойства и закономерности образования на более сложные системы", — рассказывает Татьяна Плахова из Московского университета.
Наночастицы стали предметом внимания ученых относительно недавно, примерно в последнюю половину века, однако они использовались человечеством, особенно в искусстве и металлургии, фактически с момента появления первых городов, ремесленников и цивилизации. Яркими примерами этого стали знаменитый кубок Ликурга, клинки из дамасской стали, "вечные" голубые краски индейцев майя и многие другие потерянные "ноу-хау" древности.
В последние годы физики, химики, биологи и экологи начали обращать внимание не только на позитивные стороны нанотехнологий и наночастиц, но и на потенциальную угрозу, которую они несут для здоровья человека. Многие подобные кусочки материи могут беспрепятственно проникать внутрь клеток тела, вырабатывать большие количества оксидантов и повреждать их иными путями.
К примеру, недавно Плахова и ее коллеги обнаружили, что некоторые природные минералы не просто поглощают атомы плутония и других радионуклидов, а способствуют формированию наночастиц из двуокиси этого элемента.
Вдобавок, год назад химики обнаружили, что авария на АЭС "Фукусима" и последовавшие за ней взрывы привели к формированию и выбросу огромного числа радиоактивных наночастиц в окружающую ее почву и гидросферу. Все это заставило ученых изучить свойства подобных структур для оценки их опасности для природы и человека.
Для изучения их свойств российские химики синтезировали набор наночастиц разных размеров, используя соединения тория, близкого "кузена" плутония, и просветили их при помощи мощных пучков рентгеновских лучей.
Наблюдения за тем, как фотоны высоких энергий взаимодействуют с электронами на поверхности наночастиц, как отмечают исследователи, позволяют понять, как расположены атомы относительно друг друга и как устроена частица в целом. Для получения этих данных необходимы очень большие вычислительные ресурсы и специализированное оборудование, которое имелись в распоряжении у зарубежных участников эксперимента.
Как показали эти наблюдения, химические свойства наночастиц в большей части задавались тем, как много "голых" атомов тория присутствовало на их поверхности. В целом их поведение соответствовало тому, что предсказывает теория, описывающая устройство наночастиц, что позволяет использовать ее для оценки опасности радиоактивных структур такого типа и того, как на них будут действовать вода и прочие растворители.
В ближайшее время ученые намерены просчитать свойства наночастиц урана, плутония и других элементов, способных образовать связи с большим или меньшим числом атомов кислорода. Эти расчеты помогут понять, отличаются ли они от тория в этом отношении и следует ли предпринимать какие-то особые меры для защиты от них.