МОСКВА, 6 авг — РИА Новости. Михаил Бурцев, заведующий лабораторией нейронных систем и глубокого обучения МФТИ, рассказывает о том, возможно ли создание полноценного компьютерного аналога человеческого разума, и объясняет, для чего его разрабатывают ученые и как можно защитить его от атак троллей.
В конце июля ученые из МФТИ запустили международный конкурс систем "разговорного" искусственного интеллекта, способных имитировать живого человека, и пригласили всех желающих пообщаться с ними и оценить получившиеся диалоги. Используя помощь добровольцев, ученые надеются в ближайшие три года создать голосового помощника, способного общаться с человеком почти так же хорошо, как и живой собеседник.
Соорганизаторами конкурса выступили ученые из университетов Монреаля, Макгилла и Карнеги-Меллон. Принять участие в тестировании диалоговых систем можно по ссылке.
На самом деле, эти идеи не были придуманы сегодня — современные голосовые помощники от Google, Apple, Amazon и других IT-компаний уходят корнями в глубокое прошлое, в самое начало компьютерной эры. Первая такая говорящая машина, получившая имя ELIZA, создана в 1966 году и была, по сути, шуткой, пародией на психотерапевта, дающего бесполезные советы пациенту.
В последующие годы и десятилетия программисты создавали все более сложные и "живые" системы общения с компьютером. Самые продвинутые из этих систем могут распознавать настроение хозяина, помнить его старые желания и предпочтения и решать часть рутинных и домашних задач за него, заказывая пищу или товары в магазине или же играя роль оператора в колл-центрах.
— Михаил, с момента создания ELIZA прошло почти 50 лет. Что вообще поменялось за это время и можно ли в принципе ожидать, что в будущем ученым удастся создать такую систему, которую люди не смогут отличить от живого собеседника?
— Я думаю, что в ближайшее время получится создать технологию разговорного интеллекта, которая позволит машине приблизиться к уровню ведения диалога человеком. Над этой задачей мы работаем в рамках проекта iPavlov, который является частью Национальной технологической инициативы.
Пользователю должно быть так же комфортно общаться с автоматической диалоговой системой, как с живым человеком. Это даст возможность создавать информационные системы, способные лучше понимать, чего от них хочет человек, и отвечать ему на естественном языке.
Разговорный интеллект можно будет использовать для автоматизации многих голосовых и текстовых интерфейсов, в том числе и в мессенджерах, подобных Telegram. Мессенджеры, как показывает статистика, сегодня используются активнее, чем социальные сети, и очень большое количество информации проходит через текстовые каналы коммуникации.
Ими, например, удобно пользоваться в транспорте, а добавление диалогового помощника — чат-бота — позволит пользователям не только общаться друг с другом, но и получать необходимую информацию, совершать покупки и делать множество других вещей. Это приведет к тому, что мессенджеры и голосовые помощники будут постепенно заменять привычные веб-страницы и приложения, в также играть роль онлайн-консультантов и специалистов колл-центров.
— Учитывая присутствие Apple, Google и Amazon на этом рынке, может ли Россия здесь конкурировать? Есть ли какая-то специфика у русского языка, которая может помешать потенциальным конкурентам российских компаний и ученых?
— Конечно, русский язык более сложный, и часть методов, которые сегодня используются в разработке диалоговых систем и голосовых помощников в мире, нельзя применять без доработки и существенной модификации, которые бы позволили им работать с более богатой грамматикой.
С другой стороны, базовые алгоритмы, которые используются в работе Siri, Cortana, Google и других цифровых помощников, никто не скрывает — они доступны для нас как минимум на уровне исследований и концепций. Исследовательские статьи и программный код часто находятся в открытом доступе — в принципе, его можно адаптировать и под русский язык.
Причем попыток осуществить это на "промышленном" уровне не так много. Единственный крупный проект ведется компанией "Яндекс", которая разрабатывает помощника в рамках проекта "Алиса".
В нашем проекте мы пытаемся создать инструменты, которые бы упростили и ускорили создание подобных "промышленных" диалоговых систем, предназначенных для самых разных целей. Но разработка универсального голосового помощника, способного решать любые задачи, — крайне сложная задача даже для крупных компаний.
С другой стороны, автоматизация небольшого бизнеса, в работе которого будет использоваться специализированная диалоговая система, осуществить гораздо проще. Мы надеемся, что те инструменты, которые мы создадим, помогут предпринимателям и программистам достаточно быстро решать такие задачи, не имея при этом каких-то глубоких знаний и не прилагая для этого сверхусилий.
— Многие ученые, такие как Роджер Пенроуз или Стюарт Хамерофф, считают, что человеческий разум носит квантовую природу и построить его машинный аналог нельзя в принципе. Согласны ли вы с ними или нет?
— На мой взгляд, если посмотреть на то, что мы сегодня знаем об устройстве мозга и природе человеческого сознания, то пока перед нами не стоит никаких фундаментальных препятствий для того, чтобы воспроизвести его работу при помощи компьютера.
У Пенроуза и Хамероффа есть некий набор гипотез, которые, по их мнению, объясняют то, почему это нельзя сделать. Пока нейрофизиологи не нашли никаких экспериментальных подтверждений того, что эти гипотезы верны, а наш текущий багаж знаний говорит в пользу обратного.
Другое дело, что временные рамки того, когда такая машина будет создана, остаются не до конца определенными. Это может, как мне кажется, произойти не менее чем через 50, а то и 100 лет.
— Потребуются ли для этого принципиально новые технологии и компьютеры, более близкие по принципам работы к нейронам, чем к цифровой логике?
— Если мы считаем, что человеческий интеллект основывается на некой форме вычислений, то тогда любая универсальная вычислительная система, эквивалентная машине Тьюринга, может в теории эмулировать работу мозга человека.
Другое дело, что эта машина может работать очень медленно, что сделает ее бесполезной с практической точки зрения. Сегодня трудно предположить, какие технологии построения компьютеров здесь нам понадобятся.
— Какие другие задачи могут решать цифровые помощники, кроме тех вещей, которыми они занимаются сегодня? Можно ли использовать их для расшифровки текстов на мертвых языках или шифровок, подобных манускрипту Войнича?
— На настоящий момент, насколько я знаю, никто не пытался применять нейросети для раскрытия секретов мертвых языков и расшифровки текстов, однако мне кажется, что кто-нибудь попытается это сделать в ближайшее время. Мы, в свою очередь, пока не интересовались подобными вещами.
"Помощник" — это, на самом деле, очень широкое понятие, которое может включать в себя много самых разных вещей. Если взять, к примеру, ту же самую ELIZA, виртуального "психотерапевта", возникает вопрос: является ли она помощником или нет?
Диалоговые системы можно использовать не только для решения практических задач, но и для того, чтобы развлекать людей или поддерживать их настроение. Тут вопрос, на самом деле, в том, что мы вкладываем в понятие персонального помощника и насколько широким или узким оно является. Если брать наиболее широко, то все вопросы, которые связаны с общением, подобные системы могут решать, хотя и с разной степенью успешности.
Разговорные интерфейсы, помимо непосредственного общения с людьми, можно применять и для того, чтобы научить машины быстро находить общий язык и передавать информацию из одной системы в другую.
Это позволит обойти проблему установления связей и передачи данных между уже существующими и создаваемыми сервисами, так как для общения друг с другом им не нужно будет знать спецификации API друг друга. Они смогут обмениваться данными, используя естественные языки или свой собственный искусственный язык, который будет изобретен машинами или человеком для таких целей.
Грубо говоря, даже "незнакомые" друг другу системы смогут договориться, используя общий для них язык общения, а не фиксированные правила обмена информацией. Если же что-то им будет непонятно, то они могут спросить о неизвестных им вещах друг у друга, что сделает всю инфраструктуру предоставления сервисов и услуг в интернете невероятно гибкой и позволит ей быстро интегрировать в себя новые услуги без помощи людей.
— В связи с этим возникает вопрос — кто должен нести ответственность за рекомендации "психотерапевта" ELIZA, компьютерных докторов и других голосовых помощников, чьи советы могут сильно повлиять на благополучие и здоровье человека?
— Это очень сложный вопрос, так как сегодня нет четких критериев, которые бы помогали нам понять, как нужно действовать в подобных случаях. Многие интернет-сервисы и службы, которые выдают рекомендации пользователям, начинают работать только после того, как пользователь соглашается с условиями предоставления сервиса и теми последствиями, которые могут возникнуть в результате работы с ним.
Как мне кажется, работа чат-ботов и голосовых помощников — по крайней мере, на первых этапах их существования — могла бы регулироваться схожим образом. Например, если бот просто ищет и анализирует информацию, действуя почти так же, как и поисковая система, то к нему могут быть применены те же правила. В том случае, если он будет давать медицинские или юридические консультации, форма ответственности должна быть другой.
К примеру, подобные системы должны четко уведомлять пользователя о том, к каким последствиям ведет выбор между искусственным интеллектом и обычным врачом. У человека появится выбор — довериться доктору, который будет, к примеру, ошибаться в 10% случаев, или же сделать ставку на машину, которая дает неверный ответ в 3% случаев. В первом случае ответственность за ошибку будет нести доктор, а во втором — сам пользователь.
— В прошлом году компания Microsoft запустила чат-бот Tay.AI, который ей пришлось отключить буквально через сутки из-за того, что пользователи сети превратили "девочку-подростка" в настоящего расиста. Можно ли защитить подобные диалоговые системы от троллей и шутников?
— Мне кажется, что защититься можно, а вот стоит ли это делать, зависит от назначения системы. Понятно, что если система не должна выдавать какие-то определенные реплики — грубые или экстремистские, то мы можем фильтровать ее ответы. Эта фильтрация может происходить или еще на этапе обучения системы, или уже во время генерации ответов.
Кстати, схожая задача оценки качества диалога решалась командами в рамках научной школы-хакатона DeepHack Turing, который проходил в Физтехе несколько недель назад. Его участники разрабатывали алгоритмы, которые могли бы предсказать по репликам в диалоге, какую оценку человек поставит диалоговой системе.
Следующий шаг в развитии этого подхода — создание программы, которая бы оценивала приемлемость фраз или надежность источников, используемых при генерации ответов на запросы пользователей. Это, как мне кажется, помогло бы решить данную проблему.