МОСКВА, 6 окт – РИА Новости. Ученые из Германии и США разработали новую методику ускорения частиц при помощи терагерцового излучения, которая позволила им уменьшить габариты подобного прибора в 100 раз и собрать его единичный "кубик" размером со спичку, говорится в статье, опубликованной в журнале Nature Communications.
Большинство современных ускорителей частиц, помимо их экзотических "кильватерных" и лазерных разновидностей, используют радиоволны для передачи энергии разгоняемым частицам. Очень большая длина волны у радиоволн является одной из причин того, почему современные коллайдеры приближаются по площади к небольшому государству.
Физики из Германского синхротронного центра DESY и их коллеги из Америки под руководством Франца Кертнера (Franz Kaertner) сделали большой шаг в сторону радикального уменьшения размеров ускорителей частиц, научившись использовать другой тип волн – так называемое терагерцовое излучение – для разгона заряженных частиц.
Как объясняют ученые, терагерцовые волны занимают промежуточное положение между светом и классическими радиоволнами, обладая положительными чертами и тех и других. В частности, они так же легко проникают через материю, как и радиоволны, и при этом не ионизирует ее. Это позволяет использовать подобные лучи в качестве безопасной замены для рентгена, в качестве основы для сверхскоростных систем связи и ряда других целей.
Главной положительной чертой этого излучения в контексте ускорения частиц является то, что длина его волн в тысячу раз короче, чем у тех радиоволн, которые используются в современных ускорителях. Это позволяет, в теории, уменьшить размеры всех компонентов ускорителя в аналогичное число раз, однако сначала физикам нужно приспособить терагерцовые волны для работы в ускорителях.
Кертнер и его коллеги создали первый прототип такого устройства размером с довольно крупную спичку или небольшую сигарету, изготовив особый световод, поглощающий лучи терагерцового излучения и передающий их энергию электронам, пролетающим через этот модуль.
"Конечно, это не особо сильное ускорение, но наш эксперимент показал, что подобная методика разгона частиц работает на практике. Если теории верны, то мы сможем достичь значений ускорительного градиента в гигаэлектронвольт на метр, что в десять раз больше, чем показывают лучшие ускорители сегодня", — заключает Арья Фаллахи (Arya Fallahi) из Германского синхротронного центра DESY.