МОСКВА, 25 апр — РИА Новости, Татьяна Пичугина. Ровно 65 лет назад британские ученые Джеймс Уотсон и Фрэнсис Крик опубликовали статью о расшифровке структуры ДНК, заложив основы новой науки — молекулярной биологии. Это открытие изменило очень многое в жизни человечества. РИА Новости рассказывает о свойствах молекулы ДНК и о том, почему она так важна.
Во второй половине XIX века биология была совсем молодой наукой. Ученые только приступали к исследованию клетки, а представления о наследственности, хотя и были уже сформулированы Грегором Менделем, не получили широкого признания.
Весной 1868 года молодой швейцарский врач Фридрих Мишер приехал в Университет города Тюбингена (Германия), чтобы заняться научной работой. Он намеревался узнать, из каких веществ состоит клетка. Для экспериментов выбрал лейкоциты, которые легко получить из гноя.
Отделяя ядро от протоплазмы, белков и жиров, Мишер обнаружил соединение с большим содержанием фосфора. Он назвал эту молекулу нуклеином ("нуклеус" на латыни — ядро).
Это соединение проявляло кислотные свойства, поэтому возник термин "нуклеиновая кислота". Его приставка "дезоксирибо" означает, что молекула содержит H-группы и сахара. Потом выяснилось, что на самом деле это соль, но название менять не стали.
В начале XX века ученые уже знали, что нуклеин представляет собой полимер (то есть очень длинную гибкую молекулу из повторяющихся звеньев), звенья сложены четырьмя азотистыми основаниями (аденином, тимином, гуанином и цитозином), а нуклеин содержится в хромосомах — компактных структурах, которые возникают в делящихся клетках. Их способность передавать наследственные признаки продемонстрировал американский генетик Томас Морган в опытах на дрозофилах.
Модель, объяснившая гены
А вот что делает в ядре клетки дезоксирибонуклеиновая кислота, сокращенно ДНК, долго не понимали. Считалось, что она играет какую-то структурную роль в хромосомах. Единицам наследственности — генам — приписывали белковую природу. Прорыв совершил американский исследователь Освальд Эвери, опытным путем доказавший, что генетический материал передается от бактерии к бактерии посредством ДНК.
Стало ясно, что ДНК нужно изучать. Но как? В то время ученым был доступен только рентген. Чтобы просвечивать им биологические молекулы, их приходилось кристаллизовать, а это сложно. Расшифровкой структуры белковых молекул по рентгенограммам занимались в Кавендишской лаборатории (Кембридж, Великобритания). Работавшие там молодые исследователи Джеймс Уотсон и Френсис Крик не располагали собственными экспериментальными данными по ДНК, поэтому они воспользовались рентгенограммами коллег из Королевского колледжа Мориса Уилкинса и Розалинды Франклин.
Уотсон и Крик предложили модель структуры ДНК, точно соответствующую рентгенограммам: две параллельные цепочки закручены в правую спираль. Каждая цепочка складывается произвольным набором азотистых оснований, нанизанных на остов их сахаров и фосфатов, и удерживается водородными связями, протянутыми между основаниями. Причем аденин соединяется только с тимином, а гуанин — с цитозином. Это правило называют принципом комплементарности.
Модель Уотсона и Крика объясняла четыре главных функции ДНК: репликацию генетического материала, его специфику, хранение информации в молекуле и ее способность мутировать.
Ученые опубликовали свое открытие в журнале Nature 25 апреля 1953 года. Через десять лет им вместе с Морисом Уилкинсом присудили Нобелевскую премию по биологии (Розалинда Франклин скончалась в 1958 году от рака в возрасте 37 лет).
"Теперь, более полувека спустя, можно констатировать, что открытие структуры ДНК сыграло в развитии биологии такую же роль, как в физике — открытие атомного ядра. Выяснение строения атома привело к рождению новой, квантовой физики, а открытие строения ДНК привело к рождению новой, молекулярной биологии", — пишет Максим Франк-Каменецкий, выдающийся генетик, исследователь ДНК, автор книги "Самая главная молекула".
Генетический код
Теперь оставалось узнать, как эта молекула действует. Было известно, что ДНК содержит инструкции для синтеза клеточных белков, которые выполняют всю работу в клетке. Белки — это полимеры, состоящие из повторяющихся наборов (последовательностей) аминокислот. Причем аминокислот — всего двадцать. Виды животных отличаются друг от друга набором белков в клетках, то есть разными последовательностями аминокислот. Генетика утверждала, что эти последовательности задаются генами, которые, как тогда считали, служат первокирпичиками жизни. Но что такое гены, никто в точности не представлял.
Ясность внес автор теории Большого взрыва физик Георгий Гамов, сотрудник Университета Джорджа Вашингтона (США). Основываясь на модели двухцепочечной спирали ДНК Уотсона и Крика, он предположил, что ген — это участок ДНК, то есть некая последовательность звеньев — нуклеотидов. Поскольку каждый нуклеотид — это одно из четырех азотистых оснований, то нужно просто выяснить, как четыре элемента кодируют двадцать. В этом состояла идея генетического кода.
К началу 1960-х установили, что белки синтезируются из аминокислот в рибосомах — своего рода "фабриках" внутри клетки. Чтобы приступить к синтезу белка, к ДНК приближается фермент, распознает определенный участок в начале гена, синтезирует копию гена в виде маленькой РНК (ее называют матричной), затем уже в рибосоме из аминокислот выращивается белок.
Выяснили также, что генетический код — трехбуквенный. Это значит, что одной аминокислоте соответствуют три нуклеотида. Единицу кода назвали кодоном. В рибосоме информация с мРНК считывается кодон за кодоном, последовательно. И каждому из них соответствует несколько аминокислот. Как же выглядит шифр?
На этот вопрос ответили Маршалл Ниренберг и Генрих Маттеи из США. В 1961 году они впервые доложили свои результаты на биохимическом конгрессе в Москве. К 1967-му генетический код полностью расшифровали. Он оказался универсальным для всех клеток всех организмов, что имело далеко идущие последствия для науки.
Открытие структуры ДНК и генетического кода полностью переориентировало биологические исследования. То, что у каждого индивида уникальная последовательность ДНК, кардинально изменило криминалистику. Расшифровка генома человека дала антропологам совершенно новый метод изучения эволюции нашего вида. Недавно изобретенный редактор ДНК CRISPR-Cas позволил сильно продвинуть вперед генную инженерию. По всей видимости, в этой молекуле хранится решение и самых злободневных проблем человечества: рака, генетических заболеваний, старения.