https://ria.ru/20230814/nauka-1889527173.html
В России в два раза улучшили систему предсказания поломок газовых турбин
В России в два раза улучшили систему предсказания поломок газовых турбин - РИА Новости, 14.08.2023
В России в два раза улучшили систему предсказания поломок газовых турбин
Нейросетевой подход к прогнозированию поломок газовых турбин и других силовых установок создали ученые ВолгГТУ. Разработка, как объяснили создатели, в два раза... РИА Новости, 14.08.2023
2023-08-14T09:00
2023-08-14T09:00
2023-08-14T09:29
наука
волгоградский государственный технический университет (волггту)
наука
университетская наука
навигатор абитуриента
россия
волгоград
нейросеть
https://cdnn21.img.ria.ru/images/07e7/08/0b/1889543702_0:276:2977:1951_1920x0_80_0_0_0e1c161cd56a7964213cc9c2ab05288d.jpg
МОСКВА, 14 авг – РИА Новости. Нейросетевой подход к прогнозированию поломок газовых турбин и других силовых установок создали ученые ВолгГТУ. Разработка, как объяснили создатели, в два раза точнее аналогов, что позволит обеспечить качественно новый уровень технического обслуживания и снизить издержки предприятий. Результаты опубликованы в журнале Energies.Обеспечение надежности силовых установок и другого оборудования топливно-энергетического комплекса является критически важной задачей сегодня, подчеркнули ученые.По их словам, одним из направлений оптимизации расходов на энергетику и повышения ее надежности является разработка гибких и точных методов контроля износа оборудования. Применение таких систем позволит обеспечить бесперебойную работу энергетических предприятий и своевременный эффективный ремонт установок.Ученые Волгоградского государственного технического университета (ВолгГТУ) разработали метод, позволяющий с большей точностью прогнозировать время выхода оборудования из строя.Подход, основанный на нейросетевых моделях глубокого обучения, уже прошел проверку на газовых турбинах, а в перспективе, по словам создателей, он применим для любых промышленных двигателей и силовых установок."Каждому предприятию принципиально важно понимать, каково текущее состояние оборудования и что необходимо сделать, чтобы продлить его ресурс. Наш метод позволяет проводить эту оценку и снизить ошибку прогнозирования времени отказа оборудования в два раза по сравнению с существующими аналогами", – рассказал заведующий кафедрой систем автоматизированного проектирования и поискового конструирования факультета электроники и вычислительной техники ВолгГТУ Максим Щербаков.Как объяснили создатели, разработка способна давать точные прогнозы при минимальном наборе данных об исходных характеристиках оборудования. Особенность нового подхода – использование нейросетевых механизмов, не требующих заранее обработанного массива данных.Ученые использовали сверточные нейронные сети и нейронные сети для обработки последовательностей, благодаря чему новый метод можно применять для оборудования разных типов и для анализа редких повреждений, статистика по которым отсутствует."Классические подходы оценки ресурса оборудования построены на статистике поломок, но тут есть существенные ограничения: производители оборудования не всегда предоставляют развернутую статистику, и в целом количество зафиксированных отказов подобной техники слишком мало даже для самых мощных алгоритмов машинного обучения, "тренирующихся" на заранее подготовленных данных", – сообщил Щербаков.Снижение ошибки прогнозирования дает техническому персоналу больше времени на принятие решения, объяснили ученые. По их словам, диспетчер будет проинформирован не только о времени потенциального отказа, но и об изменениях в работе установок, связанных с износом компонентов."Имея точную оценку времени отказа оборудования, можно скорректировать программу технического обслуживания или оптимизировать режим работы оборудования. Это позволит перейти к качественно новому уровню технического обслуживания", – подчеркнул Щербаков.Кроме того, полученные результаты могут быть использованы производителями оборудования для формирования дополнительных сервисов для эксплуатантов, например для оценки качества ремонта, отметили ученые.Предложенный метод является частью создаваемой в ВолгГТУ интеллектуальной платформы управления техническим состоянием оборудования для предприятий топливно-энергетического комплекса. Платформа позволит формировать цифровые двойники оборудования, оценивать и прогнозировать его техническое состояние, а также оптимизировать режимы работы для повышения экономического эффекта.Создание платформы является стратегическим проектом ВолгГТУ в рамках реализации программы "Приоритет-2030".
https://ria.ru/20221122/volggtu-1833174857.html
https://ria.ru/20230717/nauka-1883954514.html
https://ria.ru/20230531/nauka-1874307612.html
россия
волгоград
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2023
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/07e7/08/0b/1889543702_0:0:2729:2047_1920x0_80_0_0_848ac1b361621636dd2c7ae7ca276081.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
волгоградский государственный технический университет (волггту), наука, университетская наука, навигатор абитуриента, россия, волгоград, нейросеть
Наука, Волгоградский государственный технический университет (ВолгГТУ), Наука, Университетская наука, Навигатор абитуриента, Россия, Волгоград, нейросеть
МОСКВА, 14 авг – РИА Новости. Нейросетевой подход к прогнозированию поломок газовых турбин и других силовых установок создали ученые
ВолгГТУ. Разработка, как объяснили создатели, в два раза точнее аналогов, что позволит обеспечить качественно новый уровень технического обслуживания и снизить издержки предприятий. Результаты
опубликованы в журнале Energies.
Обеспечение надежности силовых установок и другого оборудования топливно-энергетического комплекса является критически важной задачей сегодня, подчеркнули ученые.
По их словам, одним из направлений оптимизации расходов на энергетику и повышения ее надежности является разработка гибких и точных методов контроля износа оборудования. Применение таких систем позволит обеспечить бесперебойную работу энергетических предприятий и своевременный эффективный ремонт установок.
Ученые Волгоградского государственного технического университета (ВолгГТУ) разработали метод, позволяющий с большей точностью прогнозировать время выхода оборудования из строя.
Подход, основанный на нейросетевых моделях глубокого обучения, уже прошел проверку на газовых турбинах, а в перспективе, по словам создателей, он применим для любых промышленных двигателей и силовых установок.
«
"Каждому предприятию принципиально важно понимать, каково текущее состояние оборудования и что необходимо сделать, чтобы продлить его ресурс. Наш метод позволяет проводить эту оценку и снизить ошибку прогнозирования времени отказа оборудования в два раза по сравнению с существующими аналогами", – рассказал заведующий кафедрой систем автоматизированного проектирования и поискового конструирования факультета электроники и вычислительной техники ВолгГТУ Максим Щербаков.
Как объяснили создатели, разработка способна давать точные прогнозы при минимальном наборе данных об исходных характеристиках оборудования. Особенность нового подхода – использование нейросетевых механизмов, не требующих заранее обработанного массива данных.
Ученые использовали сверточные нейронные сети и нейронные сети для обработки последовательностей, благодаря чему новый метод можно применять для оборудования разных типов и для анализа редких повреждений, статистика по которым отсутствует.
"Классические подходы оценки ресурса оборудования построены на статистике поломок, но тут есть существенные ограничения: производители оборудования не всегда предоставляют развернутую статистику, и в целом количество зафиксированных отказов подобной техники слишком мало даже для самых мощных алгоритмов машинного обучения, "тренирующихся" на заранее подготовленных данных", – сообщил Щербаков.
Снижение ошибки прогнозирования дает техническому персоналу больше времени на принятие решения, объяснили ученые. По их словам, диспетчер будет проинформирован не только о времени потенциального отказа, но и об изменениях в работе установок, связанных с износом компонентов.
"Имея точную оценку времени отказа оборудования, можно скорректировать программу технического обслуживания или оптимизировать режим работы оборудования. Это позволит перейти к качественно новому уровню технического обслуживания", – подчеркнул Щербаков.
Кроме того, полученные результаты могут быть использованы производителями оборудования для формирования дополнительных сервисов для эксплуатантов, например для оценки качества ремонта, отметили ученые.
Предложенный метод является частью создаваемой в ВолгГТУ интеллектуальной платформы управления техническим состоянием оборудования для предприятий топливно-энергетического комплекса. Платформа позволит формировать цифровые двойники оборудования, оценивать и прогнозировать его техническое состояние, а также оптимизировать режимы работы для повышения экономического эффекта.
Создание платформы является стратегическим проектом ВолгГТУ в рамках реализации программы "Приоритет-2030".