https://ria.ru/20190617/1555637048.html
Физики из МФТИ создали дешевый и компактный датчик "раздевающих" лучей
Физики из МФТИ создали дешевый и компактный датчик "раздевающих" лучей - РИА Новости, 17.06.2019
Физики из МФТИ создали дешевый и компактный датчик "раздевающих" лучей
Российские ученые выяснили, как можно использовать дешевые разновидности графена для создания датчиков терагерцового излучения, что позволит производить их в... РИА Новости, 17.06.2019
2019-06-17T16:12
2019-06-17T16:12
2019-06-17T16:12
наука
долгопрудный
московский физико-технический институт
открытия - риа наука
андрей гейм
физика
https://cdnn21.img.ria.ru/images/104563/49/1045634943_112:0:1890:1000_1920x0_80_0_0_d69e91d2329313a2b664b017b08bc9d5.jpg
МОСКВА, 17 июн – РИА Новости. Российские ученые выяснили, как можно использовать дешевые разновидности графена для создания датчиков терагерцового излучения, что позволит производить их в промышленных количествах и ускорит их проникновение в нашу жизнь. Их выводы были представлены в журнале Physical Review Applied.Терагерцовое излучение относится к числу самых перспективных направлений исследований в области оптики, микроэлектроники и в других высокотехнологичных сферах. В перспективе, волны такого типа можно приспособить для сверхскоростной передачи информации, наблюдения за работой живых клеток в режиме реального времени и множества других целей.Одна из таких целей и самое известное свойство этого излучения – теоретическая способность делать наблюдаемые объекты "прозрачными". К примеру, недавно ученые из MIT научились читать закрытые книги, используя источник и приемник Т-излучения и специальную программу, анализирующую получаемые ими снимки.Распространению подобных технологий мешает то, что все существующие сегодня детекторы подобных волн имеют огромные размеры, они устроены крайне сложно с технической точки зрения и потребляют большие количества электричества.Причина этого проста – терагерцовые волны обладают слишком большой длиной для того, чтобы их можно было улавливать при помощи транзисторов, аналогичных тем, на базе которых построены светочувствительные матрицы во всех цифровых камерах и телескопах.В конце прошлого года нобелевский лауреат Андрей Гейм, а также их коллеги из МФТИ, представили первое решение для этой проблемы, использовав графен в качестве основы для создания компактного и при этом чувствительного детектора "раздевающих лучей".Для этого ученые соединили своеобразный "бутерброд" из нескольких слоев графена, а также нитрида бора, его близкого "кузена", с антенной из наночастиц, способной улавливать подобные электромагнитные колебания. Графен и второй плоский материал играли роль своеобразного усилителя сигнала, помогавшего ученым улавливать терагерцовые волны и фокусироваться на определенной части их спектра.Это устройство работает очень хорошо, однако, как отмечает Дмитрий Свинцов, один из его создателей из Московского физико-технического института, у него есть один большой недостаток, не позволяющий производить подобные датчики "раздевающих лучей" в больших количествах.Дело в том, что эти приборы были изготовлены из сверхчистого графена, произведенного фактически вручную, при помощи методики, за открытие которой Гейм и Константин Новоселов были удостоены Нобелевской премии в 2010 году. Каждый подобный фрагмент изготавливается несколько месяцев, что делает эту методику производства графена непригодной для промышленного применения.За последние годы, как отмечает пресс-служба МФТИ, физики и химики создали несколько других методик производства "нобелевского" углерода, позволяющих получать достаточно большие фрагменты этого материала в больших количествах за короткое время.К примеру, графен можно достаточно легко получать, пропуская смесь из метана, водорода и благородных газов через специальные печи, покрытые листами из меди и никеля. Со временем, на их поверхности возникает пленка из небольших "чешуек" плоского углерода, несколько уступающих по качеству классической версии этого материала, что усложняет работу с ним. Как отмечает пресс-служба МФТИ, российские физики потратили более года на то, чтобы научиться работать с этим материалом и управлять его свойствами. Вдобавок, теоретики, просчитавшие характер взаимодействия "антенн" и пленок из графена и нитрида бора, пришли к выводу, что эта форма "нобелевского углерода" в принципе не сможет улавливать терагерцовые волны.Их скепсис был связан с тем, что "дешевый" графен, в отличие от его классического собрата, содержит в себе множество дефектов, мешающих электронам беспрепятственно путешествовать по его листам. Чем дольше частица может двигаться по материалу, тем больше шансов, что она сможет "уловить" сигналы, воспринимаемые антеннами, и передать эту информацию ученым.Несмотря на это, Свинцов и его коллеги все же решили провести эксперимент. Их смелость была вознаграждена — электроны в графене действительно реагировали на сигналы, порождаемые антеннами, однако они вели себя не так, как предсказывала теория.Проанализировав их поведение и изучив то, как на них влияли колебания электронов в "зубьях" антенны, похожей по форме на расческу, физики сформулировали новую теорию, описывающую их поведение.Как отмечают исследователи, она хорошо описывает результаты экспериментов без каких-либо поправок, и ее можно применять для дальнейшего совершенствования датчиков "раздевающих лучей".
https://ria.ru/20181220/1548331389.html
https://ria.ru/20180618/1522925720.html
https://ria.ru/20170204/1487065126.html
долгопрудный
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2019
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/104563/49/1045634943_334:0:1667:1000_1920x0_80_0_0_ababef8703f2aefff81589a643e9ca1e.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
долгопрудный, московский физико-технический институт, открытия - риа наука, андрей гейм, физика
Наука, Долгопрудный, Московский физико-технический институт, Открытия - РИА Наука, Андрей Гейм, Физика
МОСКВА, 17 июн – РИА Новости. Российские ученые выяснили, как можно использовать дешевые разновидности графена для создания датчиков терагерцового излучения, что позволит производить их в промышленных количествах и ускорит их проникновение в нашу жизнь. Их выводы были представлены в журнале
Physical Review Applied. Терагерцовое излучение относится к числу самых перспективных направлений исследований в области оптики, микроэлектроники и в других высокотехнологичных сферах. В перспективе, волны такого типа можно приспособить для сверхскоростной передачи информации, наблюдения за работой живых клеток в режиме реального времени и множества других целей.
Одна из таких целей и самое известное свойство этого излучения – теоретическая способность делать наблюдаемые объекты "прозрачными". К примеру, недавно ученые из MIT научились читать закрытые книги, используя источник и приемник Т-излучения и специальную программу, анализирующую получаемые ими снимки.
Распространению подобных технологий мешает то, что все существующие сегодня детекторы подобных волн имеют огромные размеры, они устроены крайне сложно с технической точки зрения и потребляют большие количества электричества.
Причина этого проста – терагерцовые волны обладают слишком большой длиной для того, чтобы их можно было улавливать при помощи транзисторов, аналогичных тем, на базе которых построены светочувствительные матрицы во всех цифровых камерах и телескопах.
В конце прошлого года нобелевский лауреат Андрей Гейм, а также их коллеги из МФТИ, представили первое решение для этой проблемы, использовав графен в качестве основы для создания компактного и при этом чувствительного детектора "раздевающих лучей".
Для этого ученые соединили своеобразный "бутерброд" из нескольких слоев графена, а также нитрида бора, его близкого "кузена", с антенной из наночастиц, способной улавливать подобные электромагнитные колебания. Графен и второй плоский материал играли роль своеобразного усилителя сигнала, помогавшего ученым улавливать терагерцовые волны и фокусироваться на определенной части их спектра.
Это устройство работает очень хорошо, однако, как отмечает Дмитрий Свинцов, один из его создателей из Московского физико-технического института, у него есть один большой недостаток, не позволяющий производить подобные датчики "раздевающих лучей" в больших количествах.
Дело в том, что эти приборы были изготовлены из сверхчистого графена, произведенного фактически вручную, при помощи методики, за открытие которой Гейм и Константин Новоселов были удостоены Нобелевской премии в 2010 году. Каждый подобный фрагмент изготавливается несколько месяцев, что делает эту методику производства графена непригодной для промышленного применения.
За последние годы, как отмечает пресс-служба МФТИ, физики и химики создали несколько других методик производства "нобелевского" углерода, позволяющих получать достаточно большие фрагменты этого материала в больших количествах за короткое время.
К примеру, графен можно достаточно легко получать, пропуская смесь из метана, водорода и благородных газов через специальные печи, покрытые листами из меди и никеля. Со временем, на их поверхности возникает пленка из небольших "чешуек" плоского углерода, несколько уступающих по качеству классической версии этого материала, что усложняет работу с ним.
Как отмечает пресс-служба МФТИ, российские физики потратили более года на то, чтобы научиться работать с этим материалом и управлять его свойствами. Вдобавок, теоретики, просчитавшие характер взаимодействия "антенн" и пленок из графена и нитрида бора, пришли к выводу, что эта форма "нобелевского углерода" в принципе не сможет улавливать терагерцовые волны.
Их скепсис был связан с тем, что "дешевый" графен, в отличие от его классического собрата, содержит в себе множество дефектов, мешающих электронам беспрепятственно путешествовать по его листам. Чем дольше частица может двигаться по материалу, тем больше шансов, что она сможет "уловить" сигналы, воспринимаемые антеннами, и передать эту информацию ученым.
Несмотря на это, Свинцов и его коллеги все же решили провести эксперимент. Их смелость была вознаграждена — электроны в графене действительно реагировали на сигналы, порождаемые антеннами, однако они вели себя не так, как предсказывала теория.
Проанализировав их поведение и изучив то, как на них влияли колебания электронов в "зубьях" антенны, похожей по форме на расческу, физики сформулировали новую теорию, описывающую их поведение.
Как отмечают исследователи, она хорошо описывает результаты экспериментов без каких-либо поправок, и ее можно применять для дальнейшего совершенствования датчиков "раздевающих лучей".