Рейтинг@Mail.ru
Химики из МГУ узнали, как создать альтернативу для литиевых аккумуляторов - РИА Новости, 16.04.2019
Регистрация пройдена успешно!
Пожалуйста, перейдите по ссылке из письма, отправленного на
Супертег Наука 2021январь
Наука

Химики из МГУ узнали, как создать альтернативу для литиевых аккумуляторов

© Fotolia / ratmanerЗарядка смартфона
Зарядка смартфона
Читать ria.ru в
МОСКВА, 16 апр – РИА Новости. Российские электрохимики выяснили, какие процессы мешают "миграциям" лития внутри современных аккумуляторов и раскрыли несколько неожиданных проблем. Их анализ поможет понять, почему все попытки заменить литий на другие металлы закончились неудачей, сообщает пресс-служба МГУ.
Сегодня ученые активно пытаются найти замену литий-ионным источникам питания, которые используются в различных цифровых гаджетах, автономных медицинских приборах, промышленных инструментах и космических зондах. Емкость литий-ионных аккумуляторов относительно невысока, из-за чего их использование в электромобилях и других устройствах, требующих "промышленных" запасов энергии, крайне ограничено.
Дополнительная проблема, как отмечают российские ученые, заключается в том, что повышение концентрации солей лития в электролите может сделать его нестабильным, что также мешает повышению емкости и долговечности литий-ионных аккумуляторов. Несмотря на все усилия физиков и химиков, им пока не удалось найти более дешевой и безопасной замены для этого редкого металла, которая бы обладала схожим КПД и удобством работы.
Виктория Никитина, научный сотрудник МГУ и "Сколтеха", и ее коллеги сделали большой шаг в сторону решения этой проблемы, изучив то, как литий взаимодействует с материей катода, положительно заряженного электрода, при зарядке и разрядке батареи.
Автомобиль Tesla на международном автосалоне в Нью-Йорке
Химики из МГУ рассказали, почему у электромобилей не будет емких батарей
Этот процесс, так называемая интеркаляция, протекает достаточно сложным образом – ионы лития постепенно встраиваются в структуру электрода, занимая пустоты и свободные зоны внутри него.
Она протекает в несколько стадий - сначала литий должен избавиться от "шубы" из окружающих его молекул растворителя, затем покинуть электролит и внедриться внутрь электрода. Каждая из этих фаз идет со своей собственной скоростью и особенностями, внося свой собственный "вклад" в стабильность и емкость батарей.
Никитина и ее команда детально изучили все этапы этого процесса, экспериментируя с двумя популярными версиями аккумуляторов, чьи катоды были изготовлены из соединения лития и марганца, а также лития и кобальта. Они дешевле и обладают другими плюсами по сравнению с иными типами литий-ионными батарей, но отличаются относительно низкой емкостью и мощностью.
Заполняя эти батареи разными типами электролитов, ученые наблюдали за тем, как менялось поведение катода, и пытались понять, что именно ограничивало процесс зарядки или разрядки аккумулятора.
В прошлом, ученые считали, что сильнее всего на качества батареи влияло то, как быстро литий "растворялся" внутри электрода. Российские химики выяснили, что это далеко не всегда так – в некоторых их экспериментах проблемы возникали на более ранних стадиях, к примеру, при проникновении ионов лития в катод или при их отделении от молекул растворителей.
Как надеются авторы статьи, собранные ими данные помогут не только улучшить эффективность уже существующих литий-ионных батарей, но и найти жизнеспособные альтернативы для них, в которых роль лития будут играть натрий, калий, магний или другие более распространенные и менее опасные металлы.
Молекулярная структура графена
Графен поможет ученым из МГУ улучшить литиевые "батарейки будущего"
 
 
 
Лента новостей
0
Сначала новыеСначала старые
loader
Онлайн
Заголовок открываемого материала
Чтобы участвовать в дискуссии,
авторизуйтесь или зарегистрируйтесь
loader
Обсуждения
Заголовок открываемого материала