МОСКВА, 19 сен — РИА Новости. Представьте, что вы хотите рассмотреть быструю, но хрупкую бабочку. Пока она порхает, детально изучить ее довольно трудно, поэтому нужно взять ее в руки. Но как только она оказалась в ваших ладонях, крылышки смялись и потеряли цвет. Просто бабочка слишком уязвима, и любое ваше воздействие изменяет ее вид.
Если электроны невозможно "увидеть", надо их заменить на что–то более крупное, решили ученые. Кандидаты на место электронов должны сохранять их свойства таким образом, чтобы уравнения, описывающие процессы в твердом теле, оставались неизменными. На эту роль подошли атомы при сверхнизких температурах. В физическом мире температура является аналогом энергии: чем она ниже, тем неподвижнее становится объект. При комнатной температуре атом кислорода в воздухе движется со скоростью несколько сотен метров в секунду, но чем ниже температура, тем меньше его скорость. Минимальной в нашем мире считается температура ноль градусов Кельвина, или минус 273,15 °C.
Ультрахолодные атомы охлаждены до микрокельвина и даже менее, где скорость движения составляет лишь несколько сантиметров в секунду.
Из таких атомов и оптической решетки ученые создали искусственный кристалл, аналогичный по строению природным твердым телам. Сама оптическая решетка, которая берет на себя роль атомарной решетки твердого тела, создается с помощью лазеров, чьи лучи пересекаются под заданными углами. Управляя положением лазеров и их мощностью, можно непрерывно менять геометрию решетки, а путем наложения дополнительного поля переключить взаимодействие между "электронами" с отталкивающего на притягивающее.
Но для проведения экспериментов необходимо управлять движением электронов. Они поддаются воздействию электрического и магнитного полей, так как имеют заряд. Атомы же, замещающие электроны в искусственном кристалле, нейтральны, поэтому необходимо было придумать замену управляющей ими силы. Электрическое поле успешно заменила гравитация, которая отвечает за прямолинейное движение электрона. Однако электроны в магнитном поле закручиваются, их траекторию можно описать как спиралевидную. Поэтому исследователи создали синтетическое магнитное поле, оказывающее на движущиеся атомы такое же действие, как и настоящее магнитное поле, что является главным условием для изучения фундаментальных законов.
Таким образом физики получили возможность изучать свойства любых твердых тел (металлов, полупроводников, диэлектриков), экспериментировать с ними и изменять по собственному желанию. Получается, что учеными создан некий "конструктор", — система, симулирующая свойства квантового мира электронов, но, в отличие от него, легко доступная для исследований.
"Помимо задач физики твердого тела, квантовые конструкторы на основе холодных атомов можно использовать и для решения задач из других областей, например физики элементарных частиц, — поясняет главный научный сотрудник лаборатории теории нелинейных процессов Института физики СО РАН и профессор кафедры Теоретической физики Сибирского Федерального Университета, доктор физико-математических наук Андрей Коловский. — Взаимодействие между элементарными частицами осуществляется через так называемые калибровочные поля. Знакомое нам со школы электромагнитное поле, ответственное за взаимодействие между зарядами, является частным случаем калибровочных полей. В принципе, можно смоделировать и другие поля, помимо электромагнитного, и такие исследования уже проводятся. Еще одно направление — астрофизика, где ученые, используя холодные атомы, моделируют термодинамику черных дыр".
Из таких конструкторов можно также собирать и квантовые компьютеры, с помощью которых удобно изучать телепортацию квантовых частиц.
А еще заглянуть в далекое будущее, на 20-40 миллиардов лет вперед, ведь Вселенная постоянно расширяется и, согласно законам термодинамики, ее температура плавно падает. Со временем она охладится до нанокельвинов, а благодаря квантовым симуляторам мы сможем наблюдать ее состояние прямо сейчас.