Рейтинг@Mail.ru
Сверхъяркий лазер заставил электрон "нарушить" законы физики - РИА Новости, 26.06.2017
Регистрация пройдена успешно!
Пожалуйста, перейдите по ссылке из письма, отправленного на
Супертег Наука 2021январь
Наука

Сверхъяркий лазер заставил электрон "нарушить" законы физики

© Иллюстрация РИА Новости . Алина ПолянинаСверхяркий лазер помог ученым увидеть то, как электроны взаимодействуют со светом
Сверхяркий лазер помог ученым увидеть то, как электроны взаимодействуют со светом
Читать ria.ru в
Дзен

МОСКВА, 26 июн — РИА Новости. Мощнейший лазер, яркость которого примерно в миллиард раз выше яркости Солнца, помог американским физикам увидеть, как один электрон сталкивается с тысячами частиц света, и раскрыть необычный характер их взаимодействия друг с другом, говорится в статье, опубликованной в журнале Nature Photonics.

"Когда мы имеем дело со сверхъяркими лазерами, рассеяние света — фундаментальный процесс, благодаря которому мы видим окружающий мир, — кардинальным образом меняется. Эти изменения можно представить как то, если бы форма предметов менялась при повышении или понижении яркости лампочки. Объект не просто будет становиться ярче или темнее — свет начнет отражаться под разными углами, с разными цветами при изменении яркости", — рассказывает Дональд Умштедтер (Donald Umstadter) из университета Небраски в Линкольне (США).

Как правило, столкновение фотона и электрона приводит к тому, что фотон отскакивает и начинает двигаться в противоположном направлении, не меняя своей частоты и других физических свойств. Работоспособность этого правила, которое физики называют томсоновским рассеянием, ученые многократно подтверждали, наблюдая за процессами в космосе и во время лабораторных опытов, где одиночные частицы света сталкивались с изолированными электронами.

Лазер Z Machine, мощнейший импульсный рентгеновский лазер на Земле
Российские физики выяснили, как можно превратить свет в антиматерию

Умштедтер и его коллеги решили проверить, что произойдет, если столкнуть один электрон с сотнями или тысячами частиц света, которые врежутся в него одновременно. Реализация этой задачи не так проста, как может показаться изначально: и фотон, и электрон являются сверхмалыми частицами, столкновение которых является крайне маловероятной ситуацией.

К примеру, при освещении комнаты лампочкой или в других нормальных условиях электрон сталкивается с частицей света лишь один раз в четыре часа, и фактически никогда не встречается с двумя и более фотонами одновременно.

© Фото : University of Nebraska-LincolnСверхмощный лазер Diocles, светящий ярче миллиарда Солнц
Сверхмощный лазер Diocles, светящий ярче миллиарда Солнц

Для решения этой проблемы ученые использовали сверхмощный лазер Diocles, способный вырабатывать импульсы мощностью в 100 тераватт. После первых экспериментов Умштедтеру и его коллегам пришлось начать использовать пучки разогнанных электронов, так как мощные импульсы лазера в буквальном смысле "сдували" частицы, стоящие на месте.

Физики из MIT создали прибор, сталкивающий лучи света при комнатной температуре
Ученые впервые "столкнули" лучи света при комнатной температуре

Опыты показали, что поведение и электронов, и фотонов резким образом меняется в таких условиях. Носители электрического заряда превращаются из точек в своеобразные "восьмерки" и "петли", а фотоны начинают "нарушать" законы физики и отражаться от электронов не так, как предсказывает теория Томсона. К примеру, угол отражения фотонов, их частота и некоторые другие параметры начинают зависеть от того, насколько ярким был импульс, содержавший их.

Более того, необычное поведение электронов в таких ситуациях позволяет использовать их для "склеивания" большого числа низкоэнергетических частиц света в один высокоэнергетический фотон. Для демонстрации ученые соединили 500 частиц света из инфракрасного диапазона в один рентгеновский фотон.

Обстрел атома йода сверхмощным рентгеновским лазером превратил его в аналог черной дыры
Мощнейший в мире рентгеновский лазер превратил атом в "черную дыру"

Используя этот эффект, физики получили четкие трехмерные фотографии чипов памяти из обычной USB-флешки, не задействуя при этом сверхмощные ускорители частиц, которые обычно применяются для подобных целей. Эту же технологию, как считает Умштедтер, можно применять и для медицинских экспериментов и наблюдений, а также для точного измерения мощности лазерных лучей.

 
 
 
Лента новостей
0
Сначала новыеСначала старые
loader
Онлайн
Заголовок открываемого материала
Чтобы участвовать в дискуссии,
авторизуйтесь или зарегистрируйтесь
loader
Обсуждения
Заголовок открываемого материала