https://ria.ru/20241128/nauka-1986057608.html
Ученые нашли способ продлить жизнь до 100 и более лет
Ученые нашли способ продлить жизнь до 100 и более лет - РИА Новости, 28.11.2024
Ученые нашли способ продлить жизнь до 100 и более лет
Участок генома человека, отвечающий за продолжительность жизни и способствующий "здоровому старению", выявили специалисты БФУ в составе международного научного... РИА Новости, 28.11.2024
2024-11-28T07:00
2024-11-28T07:00
2024-11-28T07:00
наука
балтийский федеральный университет
наука
университетская наука
жизнь
геном
качество жизни
днк
https://cdnn21.img.ria.ru/images/07e8/0b/1b/1986054156_0:0:3640:2048_1920x0_80_0_0_fed7e247cc566189f339086d3e83497d.jpg
МОСКВА, 28 ноя — РИА Новости. Участок генома человека, отвечающий за продолжительность жизни и способствующий "здоровому старению", выявили специалисты БФУ в составе международного научного коллектива. По полученным данным, фрагмент митохондриальной ДНК напрямую влияет на возникновение и прогрессирование "старческих" заболеваний мышечной и нервной ткани. В будущем результаты работы могут помочь в подборе "третьего родителя" для обеспечения будущему потомству долгой и здоровой жизни. Результаты представлены в bioRxiv.В организме млекопитающих присутствуют разные виды молекул ДНК, отличающиеся по структуре и функциям. Например, в каждой человеческой клетке находится небольшой ее фрагмент, расположенный не в ядре вместе с основным генетическим материалом, а в митохондриях, снабжающих клетку энергией, пояснили специалисты Балтийского федерального университета имени Иммануила Канта (БФУ). Такая структура называется митохондриальной ДНК (мтДНК).Структура этой макромолекулы больше похожа на генетический материал бактерий и образует замкнутую кольцевую структуру. Основной гипотезой появления этой ДНК в организме человека считается древний симбиоз (взаимовыгодное объединение) прокариота (одноклеточного организма без выраженного ядра, например, бактерии) и эукариотической клетки животного.Последовательность "кирпичиков" этого генетического материала определяется не обоими родителями, как в случае ядерного генома, а передается в неизменном виде от матери. Из-за этого химическое "разнообразие" в составе этой небольшой (несколько десятков генов) молекулы куда меньше, чем в ядерной ДНК. Классификация групп по составу митохондриальной ДНК может быть представлена как дерево, где ветвями будут современные группы людей, а корнем является "митохондриальная Ева", объяснили специалисты."В этой кольцевой молекуле есть "скользкие места", на которых машина, производящая копирование ДНК, "спотыкается" и "перескакивает" на другой похожий фрагмент, из-за чего часть информации теряется, и молекула становится короткой и "сломанной", — пояснил один из авторов работы, старший научный сотрудник Центра геномных исследований БФУ Константин Попадьин."Неправильные" молекулы митохондриальной ДНК возникают во всех человеческих организмах вне зависимости от пола, образа жизни и возраста, продолжил специалист. Причем накопление "ошибок" происходит в тканях, которые не подвергаются постоянному клеточному обновлению: например, в мышцах и нейронах."Укорачивание мтДНК превращает ее из "доброй" в "злую". Этот процесс происходит при наличии в молекуле одинаковых по последовательности нуклеотидов фрагментов, которые расположены в некотором удалении друг от друга (повторы). Если эти повторы абсолютно идентичны, то молекулярная машина, копирующая ДНК, может перескочить с одного повтора на другой, "вырезав" часть информации посередине", — добавил Попадьин.Когда внутри клетки накапливается "критическая масса" молекул мтДНК без фрагмента генетического материала, хозяйская клетка погибает и развиваются заболевания опорно-двигательного аппарата и нервной системы, которые существенно ухудшают качество жизни человека. Однако издревле было известно, что некоторые люди доживают до 100–120 лет, сохраняя при этом ментальное и физическое здоровье.Коллектив ученых БФУ, МГУ, ряда институтов Российской Академии наук и медицинских вузов с коллегами из Австрии, Германии, Швейцарии, Японии и США выявили, что митохондриальные ДНК долгожителей отличаются от мтДНК обычных людей. Такие мтДНК содержат изменения в химическом составе самого "скользкого" места длиной в 13 нуклеотидов — оно перестает быть "скользким" и "копировальная машина" мтДНК с большей вероятностью правильно производит дочернюю молекулу.Было показано, что изменение даже одной "буквы" из 13 в повторе на другую в десять раз снижает вероятность проскальзывания и образования делеции — генетической перестройки, при которой происходит потеря участка хромосомы. Одной из причин долголетия некоторых ветвей развития митохондриального древа может быть именно этот факт — отсутствие длинных повторов, считают специалисты."Мы провели исследование генетического материала в митохондриях ветви D4A, представители которой живут в Японии и Китае. Их вариант "скользкого" места оказался не таким, как у других групп: один из двух повторов в мтДНК содержит замену нуклеотида, что делает два повтора не идеально похожими друг на друга, что оказывается достаточным для отсутствия проскальзывания", — рассказал учёный.Специалист пояснил, что это можно сравнить со скороговоркой. Сложно без ошибок произнести фразу "шла Саша по шоссе и сосала сушку", а при замене "шоссе" на "дорогу" вероятность запинки снижается."У долгожителей в мтДНК "дорога" и "Александра", а не "шоссе" и "Саша". Это и обуславливает меньшую хрупкость генетического материала, способствует более здоровому старению и долгой жизни", — объяснил Попадьин.Одно из практических применений полученных сведений специалисты видят в митохондриальной медицине, которая появилась около 20 лет назад. Более здоровые мтДНК переносятся в ткани или даже в яйцеклетку с менее здоровыми мтДНК. Митохондриальные варианты долгожителей могут рассматриваться как универсальные доноры, которые не только не содержат больных вариантов, но и могут обеспечить более долгую жизнь с меньшим риском "поломок" в нервной и мышечной системе организма."Мы предлагаем использовать материал групп без повторов в мтДНК в качестве потенциального третьего родителя в случае необходимости митохондриального переноса, когда мать ребенка в своей мтДНК несет вредные мутации. При этой процедуре вторая мама — донор мтДНК — предоставит будущему ребенку свою здоровую мтДНК и обеспечит более здоровую и продолжительную жизнь. В ряде стран такие процедуры уже проводятся", — рассказал Попадьин.Работа выполнена при поддержке программы "Приоритет-2030" национального проекта "Наука и университеты", участником которой является БФУ.
https://ria.ru/20240820/nauka-1967028034.html
https://ria.ru/20241028/nauka-1980138440.html
https://ria.ru/20241031/nauka-1981068628.html
https://ri.ria.ru/20240924/nauka-1974243548.html
https://ria.ru/20240422/odinochestvo-1940109593.html
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2024
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/07e8/0b/1b/1986054156_408:0:3139:2048_1920x0_80_0_0_eba3fc709f014255fdf8a27ef466fcc8.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
балтийский федеральный университет, наука, университетская наука, жизнь, геном, качество жизни, днк, генетика, здоровье, здоровье - общество
Наука, Балтийский федеральный университет, Наука, Университетская наука, жизнь, геном, Качество жизни, ДНК, генетика, Здоровье, Здоровье - Общество
МОСКВА, 28 ноя — РИА Новости. Участок генома человека, отвечающий за продолжительность жизни и способствующий "здоровому старению", выявили специалисты
БФУ в составе международного научного коллектива. По полученным данным, фрагмент митохондриальной ДНК напрямую влияет на возникновение и прогрессирование "старческих" заболеваний мышечной и нервной ткани. В будущем результаты работы могут помочь в подборе "третьего родителя" для обеспечения будущему потомству долгой и здоровой жизни. Результаты
представлены в bioRxiv.
В организме млекопитающих присутствуют разные виды молекул ДНК, отличающиеся по структуре и функциям. Например, в каждой человеческой клетке находится небольшой ее фрагмент, расположенный не в ядре вместе с основным генетическим материалом, а в митохондриях, снабжающих клетку энергией, пояснили специалисты Балтийского федерального университета имени Иммануила Канта (БФУ). Такая структура называется митохондриальной ДНК (мтДНК).
Структура этой макромолекулы больше похожа на генетический материал бактерий и образует замкнутую кольцевую структуру. Основной гипотезой появления этой ДНК в организме человека считается древний симбиоз (взаимовыгодное объединение) прокариота (одноклеточного организма без выраженного ядра, например, бактерии) и эукариотической клетки животного.
Последовательность "кирпичиков" этого генетического материала определяется не обоими родителями, как в случае ядерного генома, а передается в неизменном виде от матери. Из-за этого химическое "разнообразие" в составе этой небольшой (несколько десятков генов) молекулы куда меньше, чем в ядерной ДНК. Классификация групп по составу митохондриальной ДНК может быть представлена как дерево, где ветвями будут современные группы людей, а корнем является "митохондриальная Ева", объяснили специалисты.
"В этой кольцевой молекуле есть "скользкие места", на которых машина, производящая копирование ДНК, "спотыкается" и "перескакивает" на другой похожий фрагмент, из-за чего часть информации теряется, и молекула становится короткой и "сломанной", — пояснил один из авторов работы, старший научный сотрудник Центра геномных исследований БФУ Константин Попадьин.
"Неправильные" молекулы митохондриальной ДНК возникают во всех человеческих организмах вне зависимости от пола, образа жизни и возраста, продолжил специалист. Причем накопление "ошибок" происходит в тканях, которые не подвергаются постоянному клеточному обновлению: например, в мышцах и нейронах.
«
"Укорачивание мтДНК превращает ее из "доброй" в "злую". Этот процесс происходит при наличии в молекуле одинаковых по последовательности нуклеотидов фрагментов, которые расположены в некотором удалении друг от друга (повторы). Если эти повторы абсолютно идентичны, то молекулярная машина, копирующая ДНК, может перескочить с одного повтора на другой, "вырезав" часть информации посередине", — добавил Попадьин.
Когда внутри клетки накапливается "критическая масса" молекул мтДНК без фрагмента генетического материала, хозяйская клетка погибает и развиваются заболевания опорно-двигательного аппарата и нервной системы, которые существенно ухудшают качество жизни человека. Однако издревле было известно, что некоторые люди доживают до 100–120 лет, сохраняя при этом ментальное и физическое здоровье.
Коллектив ученых БФУ, МГУ, ряда институтов Российской Академии наук и медицинских вузов с коллегами из Австрии, Германии, Швейцарии, Японии и США выявили, что митохондриальные ДНК долгожителей отличаются от мтДНК обычных людей. Такие мтДНК содержат изменения в химическом составе самого "скользкого" места длиной в 13 нуклеотидов — оно перестает быть "скользким" и "копировальная машина" мтДНК с большей вероятностью правильно производит дочернюю молекулу.
Было показано, что изменение даже одной "буквы" из 13 в повторе на другую в десять раз снижает вероятность проскальзывания и образования делеции — генетической перестройки, при которой происходит потеря участка хромосомы. Одной из причин долголетия некоторых ветвей развития митохондриального древа может быть именно этот факт — отсутствие длинных повторов, считают специалисты.
"Мы провели исследование генетического материала в митохондриях ветви D4A, представители которой живут в Японии и Китае. Их вариант "скользкого" места оказался не таким, как у других групп: один из двух повторов в мтДНК содержит замену нуклеотида, что делает два повтора не идеально похожими друг на друга, что оказывается достаточным для отсутствия проскальзывания", — рассказал учёный.
Специалист пояснил, что это можно сравнить со скороговоркой. Сложно без ошибок произнести фразу "шла Саша по шоссе и сосала сушку", а при замене "шоссе" на "дорогу" вероятность запинки снижается.
"У долгожителей в мтДНК "дорога" и "Александра", а не "шоссе" и "Саша". Это и обуславливает меньшую хрупкость генетического материала, способствует более здоровому старению и долгой жизни", — объяснил Попадьин.
Одно из практических применений полученных сведений специалисты видят в митохондриальной медицине, которая появилась около 20 лет назад. Более здоровые мтДНК переносятся в ткани или даже в яйцеклетку с менее здоровыми мтДНК. Митохондриальные варианты долгожителей могут рассматриваться как универсальные доноры, которые не только не содержат больных вариантов, но и могут обеспечить более долгую жизнь с меньшим риском "поломок" в нервной и мышечной системе организма.
«
"Мы предлагаем использовать материал групп без повторов в мтДНК в качестве потенциального третьего родителя в случае необходимости митохондриального переноса, когда мать ребенка в своей мтДНК несет вредные мутации. При этой процедуре вторая мама — донор мтДНК — предоставит будущему ребенку свою здоровую мтДНК и обеспечит более здоровую и продолжительную жизнь. В ряде стран такие процедуры уже проводятся", — рассказал Попадьин.
Работа выполнена при поддержке программы "Приоритет-2030" национального проекта "Наука и университеты", участником которой является БФУ.