https://ria.ru/20190429/1553148124.html
Ученые из МФТИ раскрыли один из секретов необыкновенной живучести сердца
Ученые из МФТИ раскрыли один из секретов необыкновенной живучести сердца - РИА Новости, 29.04.2019
Ученые из МФТИ раскрыли один из секретов необыкновенной живучести сердца
Сердечная ткань продолжает проводить электрические импульсы даже при достаточно сильных повреждениях или зарастании соединительной ткани благодаря тому, что ее... РИА Новости, 29.04.2019
2019-04-29T14:38
2019-04-29T14:38
2019-04-29T14:38
наука
медицина
сердце
бельгия
московский физико-технический институт
открытия - риа наука
здоровье - общество
здоровье
https://cdnn21.img.ria.ru/images/155236/11/1552361197_0:0:1960:1102_1920x0_80_0_0_e4b8ca2679a15805bc6943a7cba6e266.jpg
МОСКВА, 29 апр – РИА Новости. Сердечная ткань продолжает проводить электрические импульсы даже при достаточно сильных повреждениях или зарастании соединительной ткани благодаря тому, что ее электропроводные клетки способны к самоорганизации. Об этом пишут российские и бельгийские биологи в журнале PLOS Computational Biology."Мы заметили, что кардиомиоциты в образцах располагаются не случайным образом, а собираются в разветвленную проводящую сеть. Учет этого факта помог нам воспроизвести в компьютерной модели те результаты, которые мы получили в лабораторных экспериментах", — рассказывает Константин Агладзе, профессор МФТИ, чьи слова приводит пресс-служба вуза.Сердце человека и животных — уникальный орган, чьи клетки могут одновременно спонтанно вырабатывать электрические импульсы и сокращаться, не требуя для этого постоянного потока "команд" из спинного или головного мозга. Импульсы тока вырабатывают так называемые "клетки-водители", а кардиомиоциты, мускульные клетки, используют их для воспроизведения сокращений и расслабления в нужные моменты времени.Агладзе и его коллеги уже несколько лет изучают нарушения, возникающие в работе сердца из-за сбоев в работе этих клеток и контактов между ними, что, как надеются ученые, в конечном итоге поможет медикам предсказывать наступление аритмии и других проблем с работой сердечной мышцы и предотвращать их.Недавно его команда создала своеобразное "сердце Франкенштейна", заставив клетки сердечной ткани, извлеченные из тела двух разных видов животных, соединиться и биться в унисон. Позже российские ученые создали особую культуру клеток, своеобразное "сердце в пробирке", позволяющее быстро оценивать безопасность лекарств и изучать сбои в его работе.Агладзе и его коллеги использовали эту технологию, а также различные компьютерные модели сердца, для раскрытия одной из главных загадок его работы – необыкновенно высокой "живучести" электрических сигналов внутри сердечной ткани.Дело в том, что сердце состоит не только из кардиомиоцитов и клеток-водителей, но и различных компонентов соединительной ткани, играющих роль своеобразного "каркаса" и участвующих в починке мелких и крупных повреждений в его структуре. Когда первые тельца массово гибнут, их место занимают фибробласты, клетки этой ткани, в результате чего электрические свойства сердца меняются.Теоретические расчеты, как отмечают российские и бельгийские ученые, показывали, что сердечная ткань должна была полностью терять способность проводить сигналы, если количество фибробластов в ней достигало отметки в 40%. Этого, однако, в реальности не происходит – электрические импульсы продолжают распространяться в ней даже тогда, когда доля клеток соединительной ткани достигает 65-75%.Пытаясь понять, как это возможно, Агладзе и его команда вырастили несколько образцов сердечной ткани с разными количествами фибробластов, используя клетки новорожденной крысы, и проследили за распространением сигналов в них. Эти данные ученые использовали для уточнения работы компьютерных моделей сердца.Как показали эти эксперименты, волны электричества могут распространяться даже в сильно поврежденной сердечной ткани благодаря тому, что ее проводящие клетки умеют менять свою форму и "вытягиваться" таким образом, что они соединяются с близлежащими соседями. Возникает своеобразная сеть, способная передавать электрические сигналы на большие расстояния.Когда ученые реализовали эту идею в компьютерных моделях, точность их работы резко повысилась, и теперь их предсказания практически не расходились с результатами тех экспериментов, на базе которых они были построены.Как надеются Агладзе и его коллеги, дальнейшее изучение этих структур поможет биологам и медикам понять, как возникает сердечная аритмия и как от нее можно избавиться, используя различные лекарства, стимулирующие работу этой сети или помогающие клеткам объединиться в нее.
https://ria.ru/20181126/1533520136.html
https://ria.ru/20170627/1497377413.html
бельгия
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
2019
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
Новости
ru-RU
https://ria.ru/docs/about/copyright.html
https://xn--c1acbl2abdlkab1og.xn--p1ai/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
https://cdnn21.img.ria.ru/images/155236/11/1552361197_221:0:1690:1102_1920x0_80_0_0_ae3c5618ace57104f806715b418fc5e8.jpgРИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
РИА Новости
internet-group@rian.ru
7 495 645-6601
ФГУП МИА «Россия сегодня»
https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/
медицина, сердце, бельгия, московский физико-технический институт, открытия - риа наука, здоровье - общество, здоровье, биология
Наука, Медицина, Сердце, Бельгия, Московский физико-технический институт, Открытия - РИА Наука, Здоровье - Общество, Здоровье, биология
МОСКВА, 29 апр – РИА Новости. Сердечная ткань продолжает проводить электрические импульсы даже при достаточно сильных повреждениях или зарастании соединительной ткани благодаря тому, что ее электропроводные клетки способны к самоорганизации. Об этом пишут российские и бельгийские биологи в журнале
PLOS Computational Biology. «
"Мы заметили, что кардиомиоциты в образцах располагаются не случайным образом, а собираются в разветвленную проводящую сеть. Учет этого факта помог нам воспроизвести в компьютерной модели те результаты, которые мы получили в лабораторных экспериментах", — рассказывает Константин Агладзе, профессор МФТИ, чьи слова приводит пресс-служба вуза.
Сердце человека и животных — уникальный орган, чьи клетки могут одновременно спонтанно вырабатывать электрические импульсы и сокращаться, не требуя для этого постоянного потока "команд" из спинного или головного мозга. Импульсы тока вырабатывают так называемые "клетки-водители", а кардиомиоциты, мускульные клетки, используют их для воспроизведения сокращений и расслабления в нужные моменты времени.
Агладзе и его коллеги уже несколько лет изучают нарушения, возникающие в работе сердца из-за сбоев в работе этих клеток и контактов между ними, что, как надеются ученые, в конечном итоге поможет медикам предсказывать наступление аритмии и других проблем с работой сердечной мышцы и предотвращать их.
Недавно его команда создала своеобразное "сердце Франкенштейна", заставив клетки сердечной ткани, извлеченные из тела двух разных видов животных, соединиться и биться в унисон. Позже российские ученые создали особую культуру клеток, своеобразное "сердце в пробирке", позволяющее быстро оценивать безопасность лекарств и изучать сбои в его работе.
Агладзе и его коллеги использовали эту технологию, а также различные компьютерные модели сердца, для раскрытия одной из главных загадок его работы – необыкновенно высокой "живучести" электрических сигналов внутри сердечной ткани.
Дело в том, что сердце состоит не только из кардиомиоцитов и клеток-водителей, но и различных компонентов соединительной ткани, играющих роль своеобразного "каркаса" и участвующих в починке мелких и крупных повреждений в его структуре. Когда первые тельца массово гибнут, их место занимают фибробласты, клетки этой ткани, в результате чего электрические свойства сердца меняются.
Теоретические расчеты, как отмечают российские и бельгийские ученые, показывали, что сердечная ткань должна была полностью терять способность проводить сигналы, если количество фибробластов в ней достигало отметки в 40%. Этого, однако, в реальности не происходит – электрические импульсы продолжают распространяться в ней даже тогда, когда доля клеток соединительной ткани достигает 65-75%.
Пытаясь понять, как это возможно, Агладзе и его команда вырастили несколько образцов сердечной ткани с разными количествами фибробластов, используя клетки новорожденной крысы, и проследили за распространением сигналов в них. Эти данные ученые использовали для уточнения работы компьютерных моделей сердца.
Как показали эти эксперименты, волны электричества могут распространяться даже в сильно поврежденной сердечной ткани благодаря тому, что ее проводящие клетки умеют менять свою форму и "вытягиваться" таким образом, что они соединяются с близлежащими соседями. Возникает своеобразная сеть, способная передавать электрические сигналы на большие расстояния.
Когда ученые реализовали эту идею в компьютерных моделях, точность их работы резко повысилась, и теперь их предсказания практически не расходились с результатами тех экспериментов, на базе которых они были построены.
Как надеются Агладзе и его коллеги, дальнейшее изучение этих структур поможет биологам и медикам понять, как возникает сердечная аритмия и как от нее можно избавиться, используя различные лекарства, стимулирующие работу этой сети или помогающие клеткам объединиться в нее.