Рейтинг@Mail.ru
Российские физики сделали новый шаг к созданию квантового компьютера - РИА Новости, 24.11.2015
Регистрация пройдена успешно!
Пожалуйста, перейдите по ссылке из письма, отправленного на
Супертег Наука 2021январь
Наука

Российские физики сделали новый шаг к созданию квантового компьютера

© Fotolia / Tomasz ZajdaКвантовый процессор
Квантовый процессор
Читать ria.ru в
Дзен
Появление куперовских пар меняет не только электрические свойства вещества в целом, но и распределение электронов по энергиям, энергетический спектр.

МОСКВА, 23 ноя — РИА Новости. Российские ученые из МФТИ сумели объяснить необычный эффект в ряде перспективных сверхпроводящих материалов и с помощью ранее ими же разработанной теории связали плотность носителей сверхпроводящего тока с квантовыми свойствами вещества, статью о своей работе они опубликовали в Physical Review B: Condensed Matter And Materials Physics.

Как отмечается в сообщении пресс-службы МФТИ, авторы исследования — руководитель лаборатории теоретической нанофизики МФТИ Михаил Фейгельман и физик Лев Иоффе пишут в своей статье о так называемых сверхпроводниках с псевдощелью. Термин "щель" относится к квантовой теории сверхпроводимости и обозначает характерный зазор на диаграмме с распределением электронов по энергиям, энергетическом спектре. Выделяют сверхпроводники с "обычной" щелью и особые сверхпроводники, которые даже в своем "нормальном" состоянии демонстрируют нечто похожее на щель — ее называют псевдощелью.

"Вывод электрических параметров сверхпроводников с псевдощелью из квантовых свойств вещества важен как с фундаментальной (ученые стали лучше понимать сверхпроводники в целом), так и с прикладной точки зрения. Исследователи отмечают, что на основе оксида индия, типичного сверхпроводника с псевдощелью, уже удалось создать сверхпроводящее квантовое устройство, способное служить прототипом составной части квантового компьютера",- говорится в сообщении пресс-службы.

Полной модели, которая бы объясняла феномен сверхпроводимости во всех деталях и позволяла бы, например, синтезировать работающий при комнатной температуре сверхпроводник, нет по сей день, но в качестве наиболее удачной модели на сегодня используется чаще всего БКШ-теория: разработанная Джоном Бардином, Леон Нилом Купером и Джоном Шриффером. В БКШ-теории ключевую роль играют куперовские пары — связанные состояния двух электронов с противоположно направленными спинами.. Охладив металл до такой температуры, при которой тепловое движение частиц не мешает формированию куперовских пар, такие пары можно заставить перемещаться без потерь и за счет этого перевести весь образец в сверхпроводящее состояние.

Появление куперовских пар меняет не только электрические свойства вещества в целом, но и распределение электронов по энергиям, энергетический спектр. Формирование пар влечет появление в спектре характерного провала, который называют либо щелью, либо псевдощелью в зависимости от обстоятельств. Если вещество — сверхпроводник, и сверхпроводимость после охлаждения до критической температуры возникла одновременно с появлением куперовских пар, то говорят про щель (gap). Если схожая особенность на графике со спектром электронов после охлаждения появилась, но сверхпроводимости при этом еще не возникло — употребляется термин "псевдощель".

Если такое вещество охладить посильнее, оно становится сверхпроводником, а щель в его спектре увеличивается — в ее величине складываются как псевдощель, так и собственно сверхпроводящая щель. Свойства такого сверхпроводника во многом отличаются от обычного.

Изучение строения сверхпроводников с псевдощелью на микроскопическом уровне показало, что такие материалы отличаются сильной неупорядоченностью. Это значит, что их атомы не выстроены в идеальную кристаллическую решетку или структура этой решетки сильно нарушена. Примерами таких сверхпроводников с псевдощелью авторы статьи называют нитрид титана в виде тонкой пленки, в которой кристаллическая решетка окажется нарушена во многих местах и оксид индия.

 

 
 
 
Лента новостей
0
Сначала новыеСначала старые
loader
Онлайн
Заголовок открываемого материала
Чтобы участвовать в дискуссии,
авторизуйтесь или зарегистрируйтесь
loader
Обсуждения
Заголовок открываемого материала