МОСКВА, 13 мар — РИА Новости. Ученые из России, США и Швейцарии заставили квантовый компьютер на долю секунды вернуться в прошлое, "нарушив" второй закон термодинамики. Их выводы и возможное проявление этого эффекта в реальном мире представлено в журнале Scientific Reports.
«
"Это одна из серии работ, посвященных возможности нарушить второе начало термодинамики — закон физики, тесно связанный с различием между прошлым и будущим. Теперь мы подошли к проблеме с третьей стороны — мы искусственно создали такое состояние системы, которое само развивается в обратную с точки зрения второго начала сторону", — рассказывает Гордей Лесовик из Московского физтеха в Долгопрудном.
Концепция так называемой стрелы времени — одна из основ современной физики и космологии. Это постулат о том, что время в нашей Вселенной движется только в одном направлении — из прошлого в будущее — и "перемотать" его назад невозможно.
С точки зрения физики это проявляется в том, что со временем неупорядоченность, хаотичность Вселенной (это состояние ученые называют энтропией) неуклонно растет. Этот принцип, который часто называют вторым законом термодинамики, считается нерушимым правилом, управляющим жизнью Вселенной на всех уровнях. И это же причина того, почему вечный двигатель никогда не станет реальностью.
Три года назад Лесовик и его коллеги обнаружили, что второе начало термодинамики может нарушаться на квантовом уровне, хотя фактически они пытались доказать обратное. Это открыло дорогу для создания квантового аналога знаменитого "демона Максвелла" — гипотетического существа, сортирующего быстрые и медленные молекулы.
Чуть позже российские физики успешно реализовали эту идею и задумались, можно ли воспользоваться удивительными свойствами квантового мира и разбить "демона Максвелла" на несколько частей, разнесенных на сравнительно большие расстояния. Эту амбициозную задачу они решили в конце прошлого года.
Как отмечает Лесовик, логическим продолжением экспериментов стала проверка, может ли время самопроизвольно обернуться вспять хотя бы для одной частицы, чьим поведением управляют законы квантовой физики.
© Tsarcyanide/пресс-служба МФТИ
Мысленный эксперимент, описывающий нарушение второго закона термодинамики
Для этого они просчитали то, может ли электрон, находящийся в пустом пространстве, спонтанно вернуться на мгновение назад в прошлое, используя уравнение Шредингера для оценки того, где в конкретный момент времени будет находиться частица. Эти расчеты опирались на простую идею – положение частицы будет постепенно "размазываться" по пространству, подчиняясь действию "стрелы времени"
Как оказалось, электрон действительно может спонтанно оказаться в прошлом, вернувшись в то состояние, в котором он находился пару мгновений назад. Подобные события, однако, должны происходить крайне редко – по расчетам Лесовика и его коллег, это может случиться примерно один раз за все время существования Вселенной, причем время будет \"перемотано\" назад всего на 0,06 наносекунды.
Тем не менее сама возможность подобного нарушения второго начала термодинамики позволила российским и зарубежным ученым провести подобную операцию вручную, с помощью облачного квантового компьютера фирмы IBM.
Исследователи объединили два или три кубита, элементарные вычислительные модули и ячейки памяти квантовых машин, заполнили их определенным набором чисел и начали манипулировать содержимым так, что уровень хаоса в этой квантовой системе начал быстро расти.
Когда энтропия достигла определенной точки, работой кубитов начала управлять другая программа, которая перевела их в такое состояние, что дальнейшая эволюция пошла в сторону не хаоса, а порядка. В результате кубиты на мгновение вернулись в исходное состояние.
Как отмечают физики, эта процедура завершалась успехом далеко не всегда: для двух кубитов — в 80 процентах случаев, а для трех — лишь в половине. Это, как предполагают исследователи, связано с ошибками в работе самого квантового компьютера, а не с какими-то другими, совершенно неожиданными и необъяснимыми причинами.
В ближайшее время Лесовик и его команда планируют разработать более эффективные алгоритмы "обращения времени", которые будут работать быстрее и позволят манипулировать состоянием большего числа кубитов.